Publications

Publications

CEMB Faculty Publications

Filter Publications by Year:
Filter Publications by Tag:

Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974

Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974

Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI

Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI

Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431

Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052

Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052

Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006

Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular Plant. https://doi.org/10.1016/J.MOLP.2022.05.015

Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular Plant. https://doi.org/10.1016/J.MOLP.2022.05.015

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5
**  NOTE:  see press release for this publication HERE.

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
**  NOTE:  see press release for this publication HERE.

Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2

Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2

Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491

Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491

Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005

Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033

Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088

Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143.  https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679

Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679

Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013

Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).

Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2022). Fifteen compelling open questions in plant cell biology. The Plant Cell, 34(1), 72–102. https://doi.org/10.1093/PLCELL/KOAB225

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2022). Fifteen compelling open questions in plant cell biology. The Plant Cell, 34(1), 72–102. https://doi.org/10.1093/PLCELL/KOAB225

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Simmons, D. W., & Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. 111–131. https://doi.org/10.1007/978-1-0716-2261-2_8

Simmons, D. W., & Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. 111–131. https://doi.org/10.1007/978-1-0716-2261-2_8

von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018

von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018

Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392

Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392

Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525

Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525

Yang, F., Das, D., Karunakaran, K., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2022). Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2022.03.005

Yang, F., Das, D., Karunakaran, K., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2022). Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2022.03.005

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD
Go to Top