Publications

Publications

CEMB Publications

Filter Publications by Year:

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192

Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947

Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909

Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through Interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792

Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800

Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800

Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582

Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582

Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A., Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083

Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A.Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3

Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705

Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. In bioRxiv (p. 2020.12.24.424334). bioRxiv. https://doi.org/10.1101/2020.12.24.424334

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. Molecular Biology of the Cell, 32 (9). https://doi.org/10.1091/mbc.E20-11-0744

Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004

Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001

Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001

Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007

Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117

Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings Of The National Academy Of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117

Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941

Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688

Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues (Adv. Mater. 48/2020). Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues. Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Go to Top