Publications

Publications

CEMB Faculty Publications

Filter Publications by Year:
Filter Publications by Tag:

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155

Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322

Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322

Burkart, G. M., & Dixit, R. (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. Molecular Biology of the Cell, 30(13), 1587–1597. https://doi.org/10.1091/mbc.E18-12-0776

Burkart, G. M., & Dixit, R. (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. Molecular Biology of the Cell, 30(13), 1587–1597. https://doi.org/10.1091/mbc.E18-12-0776

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Damodaran, S., & Strader, L. C. (2019). Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, 851. https://doi.org/10.3389/fpls.2019.00851

Damodaran, S., & Strader, L. C. (2019). Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, 851. https://doi.org/10.3389/fpls.2019.00851

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338

Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338

Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918

Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076

Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076

Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1

Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1

Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964

Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964

Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031

Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031

Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038

Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871

Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871

Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2019). Fluorescence correlation spectroscopy and photon counting histograms in small domains. Part I: General theory. BioRxiv, 847129. https://doi.org/10.1101/847129

Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2019). Fluorescence correlation spectroscopy and photon counting histograms in small domains. Part I: General theory. BioRxiv, 847129. https://doi.org/10.1101/847129

Jing, H., & Strader, L. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486. https://doi.org/10.3390/ijms20030486

Jing, H., & Strader, L. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486. https://doi.org/10.3390/ijms20030486

Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R

Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane M., Brafford P., Herlyn M., Speicher D.W, Wargo J., Tetzlaff M., Haydu L., Raj A., Shenoy V.B., Cukierman E., and Weeraratna A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane, M., Brafford, P., Herlyn, M., Speicher, D.W, Wargo, J., Tetzlaff, M., Haydu, L., Raj, A., Shenoy, V.B., Cukierman, E., and Weeraratna, A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725

Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725

Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124

Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124

Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841

Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947

Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905

Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905

Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd

Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd

Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409

Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894

Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska‐Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska‐Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007

Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007

Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8

Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044

Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045

Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013

Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013

Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4

Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4

Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839

Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839

See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078

See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090

Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266

Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9

Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Go to Top