Publications

Publications

CEMB Faculty Publications

Filter Publications by Year:
Filter Publications by Tag:

Abaci, A., & Guvendiren, M. (2020). Designing decellularized extracellular matrix‐based bioinks for 3D bioprinting. Advanced Healthcare Materials, 2000734. https://doi.org/10.1002/adhm.202000734

Abaci, A., & Guvendiren, M. (2020). Designing decellularized extracellular matrix‐based bioinks for 3D bioprinting. Advanced Healthcare Materials, 2000734. https://doi.org/10.1002/adhm.202000734

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, In Press. https://doi.org/10.5281/ZENODO.4562309

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, https://doi.org/10.5281/ZENODO.4562309

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Alisafaei, F., Chen, X., Leahy, T., Janmey, P. A., & Shenoy, V. B. (2021). Long-range mechanical signaling in biological systems. In Soft Matter (Vol. 17, Issue 2, pp. 241–253). Royal Society of Chemistry. https://doi.org/10.1039/d0sm01442g

Alisafaei, F., Chen, X., Leahy, T., Janmey, P. A., & Shenoy, V. B. (2021). Long-range mechanical signaling in biological systems. In Soft Matter (Vol. 17, Issue 2, pp. 241–253). Royal Society of Chemistry. https://doi.org/10.1039/d0sm01442g

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155

Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stems cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stem cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974

Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Bade, N. D., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. Soft Matter, 14(33), 6867–6874. https://doi.org/10.1039/c8sm00612a

Bade, N. D., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. Soft Matter, 14(33), 6867–6874. https://doi.org/10.1039/c8sm00612a

Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Gaussian Curvature Directs stress fiber orientation and cell migration. Biophysical Journal, 114(6), 1467–1476. https://doi.org/10.1016/j.bpj.2018.01.039

Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Gaussian Curvature Directs stress fiber orientation and cell migration. Biophysical Journal, 114(6), 1467–1476. https://doi.org/10.1016/j.bpj.2018.01.039

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6

Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J., Boerckel, J. D., & Chow, B. Y. (2021). Single-component optogenetic tools for inducible Rho-A GTPase signaling. Advanced Biology, 5(9). https://doi.org/10.1002/ADBI.202100810

Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J., Boerckel, J. D., & Chow, B. Y. (2021). Single-component optogenetic tools for inducible Rho-A GTPase signaling. Advanced Biology, 5(9). https://doi.org/10.1002/ADBI.202100810

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431

Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322

Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322

Burdick, J. A., & García, A. J. (2020). Special Issue: Biomaterials in Mechanobiology. Advanced Healthcare Materials, 9(8), 2000412. https://doi.org/10.1002/adhm.202000412

Burdick, J. A., & García, A. J. (2020). Special Issue: Biomaterials in Mechanobiology. Advanced Healthcare Materials, 9(8), 2000412. https://doi.org/10.1002/adhm.202000412

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Caporizzo, M. A., & Prosser, B. L. (2021). Need for Speed: The importance of physiological strain rates in determining myocardial stiffness. Frontiers in Physiology, 12, 1183. https://www.frontiersin.org/articles/10.3389/fphys.2021.696694/full

Caporizzo, M. A., & Prosser, B. L. (2021). Need for Speed: The importance of physiological strain rates in determining myocardial stiffness. Frontiers in Physiology, 12, 1183.  https://www.frontiersin.org/articles/10.3389/fphys.2021.696694/full

Caporizzo, M. A., Chen, C. Y., Salomon, A. K., Margulies, K. B., & Prosser, B. L. (2018). Microtubules provide a viscoelastic resistance to myocyte motion. Biophysical Journal, 115(9), 1796–1807. https://doi.org/10.1016/j.bpj.2018.09.019

Caporizzo, M. A., Chen, C. Y., Salomon, A. K., Margulies, K. B., & Prosser, B. L. (2018). Microtubules provide a viscoelastic resistance to myocyte motion. Biophysical Journal, 115(9), 1796–1807. https://doi.org/10.1016/j.bpj.2018.09.019

Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038

Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Carlsson, A. E. (2018). Membrane bending by actin polymerization. Current Opinion in Cell Biology, 50, 1–7. https://doi.org/10.1016/j.ceb.2017.11.007

Carlsson, A. E. (2018). Membrane bending by actin polymerization. Current Opinion in Cell Biology, 50, 1–7. https://doi.org/10.1016/j.ceb.2017.11.007

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Charrier, E. E., Pogoda, K., Li, R., Wells, R. G., & Janmey, P. A. (2020). Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 1–10. https://doi.org/10.1007/s10237-020-01374-9

Charrier, E. E., Pogoda, K., Li, R., Wells, R. G., & Janmey, P. A. (2020). Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 1–10. https://doi.org/10.1007/s10237-020-01374-9

Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9

Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9

Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behavior. Nature, 584, 535. https://doi.org/10.1038/s41586-020-2612-2

Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behavior. Nature, 584, 535. https://doi.org/10.1038/s41586-020-2612-2

Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2

Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., Li, M., Liu, S., He, W., Ti, F., Dong, Y., Genin, G. M., Xu, F., & Lu, T. J. (2020). Mechanics tuning of liquid inclusions via bio-coating. Extreme Mechanics Letters, 41. https://doi.org/10.1016/j.eml.2020.101049

Chen, X., Li, M., Liu, S., He, W., Ti, F., Dong, Y., Genin, G. M., Xu, F., & Lu, T. J. (2020). Mechanics tuning of liquid inclusions via bio-coating. Extreme Mechanics Letters, 41. https://doi.org/10.1016/j.eml.2020.101049

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell.2020.12.002

Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell.2020.12.002

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256

Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through Interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Discher, D. E. (2018). Biomembrane mechanical properties direct diverse cell functions. In Physics of Biological Membranes (pp. 263–285). Springer International Publishing. https://doi.org/10.1007/978-3-030-00630-3_11

Discher, D. E. (2018). Biomembrane mechanical properties direct diverse cell functions. In Physics of Biological Membranes (pp. 263–285). Springer International Publishing. https://doi.org/10.1007/978-3-030-00630-3_11

Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338

Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338

Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006

Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006

Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918

Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918

Du, Y., Polacheck, W. J., & Wells, R. G. (2021). Bile Duct-on-a-Chip. In Methods in Molecular Biology: Organ-on-a-Chip (Vol. 2373, pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2021). Bile Duct-on-a-Chip. In Methods in Molecular Biology: Organ-on-a-Chip (Vol. 2373, pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4

Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y

Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113

Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Heo, S.-J., Cosgrove, B. D., Dai, E. N., & Mauck, R. L. (2018). Mechano-adaptation of the stem cell nucleus. Nucleus, 9(1), 9–19. https://doi.org/10.1080/19491034.2017.1371398

Heo, S.-J., Cosgrove, B. D., Dai, E. N., & Mauck, R. L. (2018). Mechano-adaptation of the stem cell nucleus. Nucleus, 9(1), 9–19. https://doi.org/10.1080/19491034.2017.1371398

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5
**  NOTE:  see press release for this publication HERE.

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).

Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076

Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076

Holle, A. W., Young, J. L., Van Vliet, K. J., Kamm, R. D., Discher, D., Janmey, P., Spatz, J. P., & Saif, T. (2018). Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Letters,18 (1), 1–8 https://doi.org/10.1021/acs.nanolett.7b04982

Holle, A. W., Young, J. L., Van Vliet, K. J., Kamm, R. D., Discher, D., Janmey, P., Spatz, J. P., & Saif, T. (2018). Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Letters,18 (1), 1–8 https://doi.org/10.1021/acs.nanolett.7b04982

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1

Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Jain, R., & Epstein, J. A. (2021). Not all stress is bad for your heart. Science, 374(6565), 264–265. https://doi.org/10.1126/SCIENCE.ABM1858

Jain, R., & Epstein, J. A. (2021). Not all stress is bad for your heart. Science, 374(6565), 264–265. https://doi.org/10.1126/SCIENCE.ABM1858

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031

Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031

Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038

Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
**  NOTE:  see press release for this publication HERE.

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2020). Fluorescence correlation spectroscopy and photon counting histograms in finite, bounded domains. Biophysical Journal, 119(2), 265–273. https://doi.org/10.1016/j.bpj.2020.05.032

Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2020). Fluorescence correlation spectroscopy and photon counting histograms in finite, bounded domains. Biophysical Journal, 119(2), 265–273. https://doi.org/10.1016/j.bpj.2020.05.032

Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R

Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R

Kang, S., Park, S. E., & Huh, D. D. (2021). Organ-on-a-chip technology for nanoparticle research. Nano Convergence 2021 8:1, 8(1), 1–15. https://doi.org/10.1186/S40580-021-00270-X

Kang, S., Park, S. E., & Huh, D. D. (2021). Organ-on-a-chip technology for nanoparticle research. Nano Convergence 2021 8:1, 8(1), 1–15. https://doi.org/10.1186/S40580-021-00270-X

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane M., Brafford P., Herlyn M., Speicher D.W, Wargo J., Tetzlaff M., Haydu L., Raj A., Shenoy V.B., Cukierman E., and Weeraratna A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane, M., Brafford, P., Herlyn, M., Speicher, D.W, Wargo, J., Tetzlaff, M., Haydu, L., Raj, A., Shenoy, V.B., Cukierman, E., and Weeraratna, A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3

Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3

Khader, A., & Arinzeh, T. L. (2020). Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnology and Bioengineering, 117(1), 194–209. https://doi.org/10.1002/bit.27173

Khader, A., & Arinzeh, T. L. (2020). Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnology and Bioengineering, 117(1), 194–209. https://doi.org/10.1002/bit.27173

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725

Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Kim, S., Uroz, M., Bays, J. L., & Chen, C. S. (2021). Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 56(2), 180–191. https://doi.org/10.1016/j.devcel.2020.12.017

Kim, S., Uroz, M., Bays, J. L., & Chen, C. S. (2021). Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 56(2), 180–191. https://doi.org/10.1016/j.devcel.2020.12.017

Kim, W., & Jain, R. (2020). Picking winners and losers: Cell competition in tissue development and homeostasis. Trends in Genetics, 36 (7), 490–498. https://doi.org/10.1016/j.tig.2020.04.003

Kim, W., & Jain, R. (2020). Picking winners and losers: Cell competition in tissue development and homeostasis. Trends in Genetics, 36 (7), 490–498. https://doi.org/10.1016/j.tig.2020.04.003

Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491

Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005

Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005

Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642

Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841

Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Linderman, S. W., Golman, M., Gardner, T. R., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. (2018). Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 70, 165–176. https://doi.org/10.1016/j.actbio.2018.01.032

Linderman, S. W., Golman, M., Gardner, T. R., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. (2018). Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 70, 165–176. https://doi.org/10.1016/j.actbio.2018.01.032

Lipner, J., Boyle, J. J., Xia, Y., Birman, V., Genin, G. M., & Thomopoulos, S. (2017). Toughening of fibrous scaffolds by mobile mineral deposits. Acta Biomaterialia, 58, 492–501. https://doi.org/10.1016/j.actbio.2017.05.033

Lipner, J., Boyle, J. J., Xia, Y., Birman, V., Genin, G. M., & Thomopoulos, S. (2017). Toughening of fibrous scaffolds by mobile mineral deposits. Acta Biomaterialia, 58, 492–501. https://doi.org/10.1016/j.actbio.2017.05.033

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027

Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947

Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loneker, A. E., & Wells, R. G. (2021). Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers, 13(17). https://doi.org/10.3390/CANCERS13174275

Loneker, A. E., & Wells, R. G. (2021). Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers, 13(17). https://doi.org/10.3390/CANCERS13174275

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. In bioRxiv (p. 2020.12.24.424334). bioRxiv. https://doi.org/10.1101/2020.12.24.424334

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. Molecular Biology of the Cell, 32 (9). https://doi.org/10.1091/mbc.E20-11-0744

Mathur, J., Shenoy, V., & Pathak, A. (2020). Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity. BioRxiv, 2020.03.20.000802. https://doi.org/10.1101/2020.03.20.000802

Mathur, J., Shenoy, V., & Pathak, A. (2020). Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity. BioRxiv, 2020.03.20.000802. https://doi.org/10.1101/2020.03.20.000802

McDermott, A. M., Eastburn, E. A., Kelly, D. J., & Boerckel, J. D. (2021). Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. Journal of Biomechanics, 125, 110580. https://doi.org/10.1016/J.JBIOMECH.2021.110580

McDermott, A. M., Eastburn, E. A., Kelly, D. J., & Boerckel, J. D. (2021). Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. Journal of Biomechanics, 125, 110580. https://doi.org/10.1016/J.JBIOMECH.2021.110580

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McEvoy, E., Han, Y. L., Guo, M., & Shenoy, V. B. (2020). Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19904-5

McEvoy, E., Han, Y. L., Guo, M., & Shenoy, V. B. (2020). Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19904-5

McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007

McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115

Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Moharrer, Y., & Boerckel, J. D. (2021). Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone, 153, 116104. https://doi.org/10.1016/J.BONE.2021.116104

Moharrer, Y., & Boerckel, J. D. (2021). Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone, 153, 116104. https://doi.org/10.1016/J.BONE.2021.116104

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7).https://advances.sciencemag.org/content/7/11/eabe9446

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7). https://advances.sciencemag.org/content/7/11/eabe9446

Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd

Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd

Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409

Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409

Mugnai, M. L., & Thirumalai, D. (2017). Kinematics of the lever arm swing in myosin VI. Proceedings of the National Academy of Sciences of the United States of America, 114(22), E4389–E4398. https://doi.org/10.1073/pnas.1615708114

Mugnai, M. L., & Thirumalai, D. (2017). Kinematics of the lever arm swing in myosin VI. Proceedings of the National Academy of Sciences of the United States of America, 114(22), E4389–E4398. https://doi.org/10.1073/pnas.1615708114

Muir, V. G., & Burdick, J. A. (2020). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923

Muir, V. G., & Burdick, J. A. (2020). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923

Muir, V. G., & Burdick, J. A. (2021). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923

Muir, V. G., & Burdick, J. A. (2021). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088

Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, S. E., Ahn, J., Jeong, H. E., Youn, I., Huh, D., & Chung, S. (2021). A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Materials, 13(1), 1–11. https://doi.org/10.1038/s41427-020-00273-w

Park, S. E., Ahn, J., Jeong, H. E., Youn, I., Huh, D., & Chung, S. (2021). A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Materials, 13(1), 1–11. https://doi.org/10.1038/s41427-020-00273-w

Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894

Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska‐Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska-Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143.  https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007

Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007

Pogoda, K., & Janmey, P. A. (2018). Glial tissue mechanics and mechanosensing by glial cells. Frontiers in Cellular Neuroscience, 12, 25. https://doi.org/10.3389/fncel.2018.00025

Pogoda, K., & Janmey, P. A. (2018). Glial tissue mechanics and mechanosensing by glial cells. Frontiers in Cellular Neuroscience, 12, 25. https://doi.org/10.3389/fncel.2018.00025

Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8

Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8

Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258–262.

Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258–262.

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Poling-Skutvik, R., Mcevoy, E., Shenoy, V., & Osuji, C. O. (2020). Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 4(10), 102601. https://doi.org/10.1103/PhysRevMaterials.4.102601

Poling-Skutvik, R., Mcevoy, E., Shenoy, V., & Osuji, C. O. (2020). Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 4(10), 102601. https://doi.org/10.1103/PhysRevMaterials.4.102601

Poventud‐Fuentes, I., Kwon, K. W., Seo, J., Tomaiuolo, M., Stalker, T. J., Brass, L. F., & Huh, D. (2020). A Human Vascular Injury‐on‐a‐Chip Model of Hemostasis. Small, 2004889. https://doi.org/10.1002/smll.202004889

Poventud-Fuentes, I., Kwon, K. W., Seo, J., Tomaiuolo, M., Stalker, T. J., Brass, L. F., & Huh, D. (2020). A Human Vascular Injury-on-a-Chip Model of Hemostasis. Small, 2004889. https://doi.org/10.1002/smll.202004889

Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679

Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2022). Microtubule Dumbbells to Assess the Effect of Force Geometry on Single Kinesin Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 559–583. https://doi.org/10.1007/978-1-0716-2229-2_20

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2022). Microtubule Dumbbells to Assess the Effect of Force Geometry on Single Kinesin Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 559–583. https://doi.org/10.1007/978-1-0716-2229-2_20

Pyrpassopoulos, S., Shuman, H., & Ostap, E.M. (2017). Adhesion force and attachment lifetime of the kif16b-px domain interaction with lipid membranes. Molecular Biology of the Cell, 28(23), 3315–3322. https://doi.org/10.1091/mbc.E17-05-0324

Pyrpassopoulos, S., Shuman, H., & Ostap, E.M. (2017). Adhesion force and attachment lifetime of the kif16b-px domain interaction with lipid membranes. Molecular Biology of the Cell, 28(23), 3315–3322. https://doi.org/10.1091/mbc.E17-05-0324

Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013

Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4

Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4

Saadat, F., Lagieski, M. J., Birman, V., Thomopoulos, S., & Genin, G. M. (2018). Functional grading of pericellular matrix surrounding chondrocytes: potential roles in signaling and fluid transport. BioRxiv, 365569. https://doi.org/10.1101/365569

Saadat, F., Lagieski, M. J., Birman, V., Thomopoulos, S., & Genin, G. M. (2018). Functional grading of pericellular matrix surrounding chondrocytes: potential roles in signaling and fluid transport. BioRxiv, 365569. https://doi.org/10.1101/365569

Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839

Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078

See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17. https://doi.org/10.1016/j.stem.2020.12.016

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17.     https://doi.org/10.1016/j.stem.2020.12.016

**  NOTE:  new video for this publication HERE.

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Simmons, D. W., & Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. 111–131. https://doi.org/10.1007/978-1-0716-2261-2_8

Simmons, D. W., & Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. 111–131. https://doi.org/10.1007/978-1-0716-2261-2_8

Smith, C. L., Lan, Y., Jain, R., Epstein, J. A., & Poleshko, A. (2021). Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 7(39), 3035–3059. https://doi.org/10.1126/SCIADV.ABJ3035

Smith, C. L., Lan, Y., Jain, R., Epstein, J. A., & Poleshko, A. (2021). Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 7(39), 3035–3059. https://doi.org/10.1126/SCIADV.ABJ3035

Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090

Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Song, D., Shivers, J. L., MacKintosh, F. C., Patteson, A. E., & Janmey, P. A. (2021). Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 129(14), 140901. https://doi.org/10.1063/5.0047829

Song, D., Shivers, J. L., MacKintosh, F. C., Patteson, A. E., & Janmey, P. A. (2021). Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 129(14), 140901. https://doi.org/10.1063/5.0047829

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, J. W., Paek, J., Park, K. T., Seo, J., & Huh, D. (2018). A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. Biomicrofluidics, 12(4), 042211. https://doi.org/10.1063/1.5027385

Song, J. W., Paek, J., Park, K. T., Seo, J., & Huh, D. (2018). A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. Biomicrofluidics, 12(4), 042211. https://doi.org/10.1063/1.5027385

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Song, K. H., Highley, C. B., Rouff, A., & Burdick, J. A. (2018). Complex 3D-printed microchannels within cell-degradable hydrogels. Advanced Functional Materials, 28(31), 1801331. https://doi.org/10.1002/adfm.201801331

Song, K. H., Highley, C. B., Rouff, A., & Burdick, J. A. (2018). Complex 3D-printed microchannels within cell-degradable hydrogels. Advanced Functional Materials, 28(31), 1801331. https://doi.org/10.1002/adfm.201801331

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Tsinman, T., Jiang, X., Han, L., Koyama, E., Mauck, R., & Dyment, N. (2021). Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB Journal, 35(8). https://doi.org/10.1096/FJ.202100499R

Tsinman, T., Jiang, X., Han, L., Koyama, E., Mauck, R., & Dyment, N. (2021). Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB Journal, 35(8). https://doi.org/10.1096/FJ.202100499R

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Uchida, K., Scarborough, E. A., & Prosser, B. L. (2021). Cardiomyocyte Microtubules: Control of mechanics, transport, and remodeling. Annual Review of Physiology, 84(1), 1–27. https://doi.org/10.1146/ANNUREV-PHYSIOL-062421-040656

Uchida, K., Scarborough, E. A., & Prosser, B. L. (2021). Cardiomyocyte Microtubules: Control of mechanics, transport, and remodeling. Annual Review of Physiology, 84(1), 1–27. https://doi.org/10.1146/ANNUREV-PHYSIOL-062421-040656

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118/-/DCSUPPLEMENTAL

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018

von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392

Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392

Wang, S., Hashemi, S., Stratton, S., & Arinzeh, T. L. (2020). The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 10(3), 2001244. https://doi.org/10.1002/adhm.202001244

Wang, S., Hashemi, S., Stratton, S., & Arinzeh, T. L. (2020). The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 10(3), 2001244. https://doi.org/10.1002/adhm.202001244

Williams, D., Leuthardt, E. C., Genin, G. M., & Zayed, M. (2021). Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-90813-3

Williams, D., Leuthardt, E. C., Genin, G. M., & Zayed, M. (2021). Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-90813-3

Woody, M. S., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2018). Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Optics Express, 26(9), 11181. https://doi.org/10.1364/oe.26.011181

Woody, M. S., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2018). Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Optics Express, 26(9), 11181. https://doi.org/10.1364/oe.26.011181

Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2

Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2

Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266

Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161

Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161

Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9

Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Yang, F., Das, D., Karunakaran, K., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2022). Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2022.03.005

Yang, F., Das, D., Karunakaran, K., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2022). Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2022.03.005

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237

Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues (Adv. Mater. 48/2020). Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues. Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Go to Top