Publications

Publications

CEMB Publications

Filter Publications by Year:

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, In Press. https://doi.org/10.5281/ZENODO.4562309

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, https://doi.org/10.5281/ZENODO.4562309

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stems cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stem cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

**  NOTE:  see press release for this publication HERE.

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591 

Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591 

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977

Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298

Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7).https://advances.sciencemag.org/content/7/11/eabe9446

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7). https://advances.sciencemag.org/content/7/11/eabe9446

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310

Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310

**  NOTE:  see press release for this publication HERE.

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2021). Fifteen compelling open questions in plant cell biology. The Plant Cell, in press. https://doi.org/10.1093/PLCELL/KOAB225

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2021). Fifteen compelling open questions in plant cell biology. The Plant Cell, in press. https://doi.org/10.1093/PLCELL/KOAB225

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., Messina, C., & Mendel, G. (2021). Fifteen compelling open questions in plant cell biology. The Plant Cell, (in press). https://doi.org/10.1093/plcell/koab225/6371196

Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., Messina, C., & Mendel, G. (2021). Fifteen compelling open questions in plant cell biology. The Plant Cell, (in press).

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17. https://doi.org/10.1016/j.stem.2020.12.016

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17.     https://doi.org/10.1016/j.stem.2020.12.016

**  NOTE:  new video for this publication HERE.

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118/-/DCSUPPLEMENTAL

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Go to Top