Al-Mosleh, S., Gopinathan, A., Santangelo, C. D., Huang, K. C., & Rojas, E. R. (2022). Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth. https://doi.org/10.1073/pnas
Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829
Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829
Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154
Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154
Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974
Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974
Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI
Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI
Bilkey, N., Li, H., Borodinov, N., Ievlev, A. v., Ovchinnikova, O. S., Dixit, R., & Foston, M. (2022). Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative Plant Biology, 3, e31. https://doi.org/10.1017/QPB.2022.20
Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431
Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431
Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877
Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930
Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119
Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119
Chopra, P., Quint, D., Gopinathan, A., & Liu, B. (2022). Geometric effects induce anomalous size-dependent active transport in structured environments. Physical Review Fluids, 7(7). https://doi.org/10.1103/PHYSREVFLUIDS.7.L071101
Chopra, P., Quint, D., Gopinathan, A., & Liu, B. (2022). Geometric effects induce anomalous size-dependent active transport in structured environments. Physical Review Fluids, 7(7). https://doi.org/10.1103/PHYSREVFLUIDS.7.L071101
Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761
Codjoe, J. M., Miller, K., & Haswell, E. S. (2022). Plant cell mechanobiology: Greater than the sum of its parts. The Plant Cell, 34(1), 129-145. https://doi.org/10.1093/plcell/koab230
Codjoe, J. M., Miller, K., & Haswell, E. S. (2022). Plant cell mechanobiology: Greater than the sum of its parts. The Plant Cell, 34(1), 129-145. https://doi.org/10.1093/plcell/koab230
Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501
Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501
Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022
Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052
Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052
Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006
Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4
Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile duct-on-a-chip. In R. M. (Ed.), Organ-on-a-Chip. Methods in Molecular Biology (pp. 57–68). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1693-2_4
Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4
Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344
Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344
Galarraga, J. H., Dhand, A. P., Bruce P. Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218
Galarraga, J. H., Dhand, A. P., Bruce P. Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218
Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular plant. https://doi.org/10.1016/j.molp.2022.05.015
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular plant. https://doi.org/10.1016/j.molp.2022.05.015
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular Plant. https://doi.org/10.1016/J.MOLP.2022.05.015
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).
Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725
Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725
Ismail, U., Rowe, R. A., Cashin, J., Genin, G. M., & Zayed, M. A. (2022). Multimodal thrombectomy device for treatment of acute deep venous thrombosis. Scientific Reports, 12(1), 5295. https://doi.org/10.1038/s41598-022-09001-6
Ismail, U., Rowe, R. A., Cashin, J., Genin, G. M., & Zayed, M. A. (2022). Multimodal thrombectomy device for treatment of acute deep venous thrombosis. Scientific Reports, 12(1), 5295. https://doi.org/10.1038/s41598-022-09001-6
Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2
Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2
Jones, M. L., Dahl, K. N., Lele, T. P., Conway, D. E., Shenoy, V., Ghosh, S., & Szczesny, S. E. (2022). The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of biomechanical engineering, 144(8). https://doi.org/10.1115/1.4053797
Jones, M. L., Dahl, K. N., Lele, T. P., Conway, D. E., Shenoy, V., Ghosh, S., & Szczesny, S. E. (2022). The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of biomechanical engineering, 144(8). https://doi.org/10.1115/1.4053797
Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491
Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476
Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005
Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005
Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160
Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160
Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9
Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9
Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992
Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992
Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524
Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524
Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777
McEvoy, E., Sneh, T., Moeendarbary, E., Javanmardi, Y., Efimova, N., Yang, C., Marino-Bravante, G. E., Chen, X., Escribano, J., Spill, F., Garcia-Aznar, J. M., Weeraratna, A. T., Svitkina, T. M., Kamm, R. D., & Shenoy, V. B. (2022). Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nature Communications 2022 13:1, 13(1), 1–14. https://doi.org/10.1038/s41467-022-34701-y
Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064
Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064
Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791
Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033
Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088
Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4
Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726
Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486
Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486
Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679
Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679
Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2022). Microtubule Dumbbells to Assess the Effect of Force Geometry on Single Kinesin Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 559–583. https://doi.org/10.1007/978-1-0716-2229-2_20
Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013
Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013
Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440
Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440
Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194
Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194
Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182
Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182
Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).
Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).
Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2022). Fifteen compelling open questions in plant cell biology. The Plant Cell, 34(1), 72–102. https://doi.org/10.1093/PLCELL/KOAB225
Santini, G. T., Shah, P. P., Karnay, A., & Jain, R. (2022). Aberrant chromatin organization at the nexus of laminopathy disease pathways. https://doi.org/10.1080/19491034.2022.2153564
Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217
Simmons, D. W., & Huebsch, N. (2022). iPSC-Derived Micro-Heart Muscle for Medium-Throughput Pharmacology and Pharmacogenomic Studies. 111–131. https://doi.org/10.1007/978-1-0716-2261-2_8
Song, D., Oberai, A. A., & Janmey, P. A. (2022). Hyperelastic continuum models for isotropic athermal fibrous networks. Interface Focus, 12(6). https://doi.org/10.1098/RSFS.2022.0043
Uehlin, A. F., Vines, J. B., Feldman, D. S., Dean, D. R., & Thomas, V. (2022). Inkjet Printing of Nanohydroxyapatite Gradients on Fibrous Scaffold for Bone–Ligament Enthesis. JOM, 74(9), 3336-3348. https://doi.org/10.1007/S11837-022-05397-8/
Uehlin, A. F., Vines, J. B., Feldman, D. S., Dean, D. R., & Thomas, V. (2022). Inkjet Printing of Nanohydroxyapatite Gradients on Fibrous Scaffold for Bone–Ligament Enthesis. JOM, 74(9), 3336-3348. https://doi.org/10.1007/S11837-022-05397-8/
Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1
Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1
Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5
Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5
von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018
Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392
Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525
Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525