Publications

Publications

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Go to Top