Alisafaei, F., Chen, X., Leahy, T., Janmey, P. A., & Shenoy, V. B. (2021). Long-range mechanical signaling in biological systems. In Soft Matter (Vol. 17, Issue 2, pp. 241–253). Royal Society of Chemistry. https://doi.org/10.1039/d0sm01442g
Alisafaei, F., Chen, X., Leahy, T., Janmey, P. A., & Shenoy, V. B. (2021). Long-range mechanical signaling in biological systems. In Soft Matter (Vol. 17, Issue 2, pp. 241–253). Royal Society of Chemistry. https://doi.org/10.1039/d0sm01442g
Alisafaei, F., Moheimani, H., Elson, E.L. and Genin, G.M. (2023). A nuclear basis for mechanointelligence in cells. Proceedings of the National Academy of Sciences, 120(19), p.e2303569120. https://doi.org/10.1073/pnas.2303569120
Alisafaei, F., Moheimani, H., Elson, E.L. and Genin, G.M. (2023). A nuclear basis for mechanointelligence in cells. Proceedings of the National Academy of Sciences, 120(19), p.e2303569120. https://doi.org/10.1073/pnas.2303569120
Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155
Assoian, R. K., Bade, N. D., Cameron, C. V., & Stebe, K. J. (2019). Cellular sensing of micron-scale curvature: a frontier in understanding the microenvironment. Open Biology, 9(10), 190155. https://doi.org/10.1098/rsob.190155
Basu, D., & Haswell, E. S. (2017). Plant mechanosensitive ion channels: an ocean of possibilities. Current Opinion in Plant Biology , 40, 43–48. https://doi.org/10.1016/j.pbi.2017.07.002
Basu, D., & Haswell, E. S. (2017). Plant mechanosensitive ion channels: an ocean of possibilities. Current Opinion in Plant Biology , 40, 43–48. https://doi.org/10.1016/j.pbi.2017.07.002
Bousso, I., Genin, G., & Thomopoulos, S. (2024). Achieving tendon enthesis regeneration across length scales. Current Opinion in Biomedical Engineering, 100547. https://doi.org/https://doi.org/10.1016/j.cobme.2024.100547
Bousso, I., Genin, G., & Thomopoulos, S. (2024). Achieving tendon enthesis regeneration across length scales. Current Opinion in Biomedical Engineering, 100547. https://doi.org/10.1016/j.cobme.2024.100547. [Review]
Burdick, J. A., & García, A. J. (2020). Special Issue: Biomaterials in Mechanobiology. Advanced Healthcare Materials, 9(8), 2000412. https://doi.org/10.1002/adhm.202000412
Burdick, J. A., & García, A. J. (2020). Special Issue: Biomaterials in Mechanobiology. Advanced Healthcare Materials, 9(8), 2000412. https://doi.org/10.1002/adhm.202000412
Caporizzo, M. A., & Prosser, B. L. (2021). Need for Speed: The importance of physiological strain rates in determining myocardial stiffness. Frontiers in Physiology, 12, 1183. https://www.frontiersin.org/articles/10.3389/fphys.2021.696694/full
Caporizzo, M. A., & Prosser, B. L. (2021). Need for Speed: The importance of physiological strain rates in determining myocardial stiffness. Frontiers in Physiology, 12, 1183. https://www.frontiersin.org/articles/10.3389/fphys.2021.696694/full
Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016
Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016
Codjoe, J. M., Miller, K., & Haswell, E. S. (2022). Plant cell mechanobiology: Greater than the sum of its parts. The Plant Cell, 34(1), 129-145. https://doi.org/10.1093/plcell/koab230
Codjoe, J. M., Miller, K., & Haswell, E. S. (2022). Plant cell mechanobiology: Greater than the sum of its parts. The Plant Cell, 34(1), 129-145. https://doi.org/10.1093/plcell/koab230
Dai, E. N., Heo, S.-J., & Mauck, R. L. (2020). “Looping In” mechanics: Mechanobiologic regulation of the nucleus and the epigenome. Advanced Healthcare Materials, 2000030. https://doi.org/10.1002/adhm.202000030
Dai, E. N., Heo, S.-J., & Mauck, R. L. (2020). “Looping In” mechanics: Mechanobiologic regulation of the nucleus and the epigenome. Advanced Healthcare Materials, 2000030. https://doi.org/10.1002/adhm.202000030
Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell.2020.12.002
Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell.2020.12.002
Daly, A. C., Riley, L., Segura, T., & Burdick, J. A. (2020). Hydrogel microparticles for biomedical applications. Nature Reviews Materials, 5(1), 20–43. https://doi.org/10.1038/s41578-019-0148-6
Daly, A. C., Riley, L., Segura, T., & Burdick, J. A. (2020). Hydrogel microparticles for biomedical applications. Nature Reviews Materials, 5(1), 20–43. https://doi.org/10.1038/s41578-019-0148-6
Davidson, M. D., Burdick, J. A., & Wells, R. G. (2020). Engineered biomaterial platforms to study fibrosis. Advanced Healthcare Materials, 1901682. https://doi.org/10.1002/adhm.201901682
Davidson, M. D., Burdick, J. A., & Wells, R. G. (2020). Engineered biomaterial platforms to study fibrosis. Advanced Healthcare Materials, 1901682. https://doi.org/10.1002/adhm.201901682
Dean, D., Nain, A. S., & Genin, G. M. (2023). Special Issue: Mechanics of Cells and Fibers. Acta Biomaterialia, 163, 1-6. https://doi.org/10.1016/j.actbio.2023.04.045
Dean, D., Nain, A. S., & Genin, G. M. (2023). Special Issue: Mechanics of Cells and Fibers. Acta Biomaterialia, 163, 1-6. https://doi.org/10.1016/j.actbio.2023.04.045 *Review Article*
Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052
Di Caprio, N., & Burdick, J. A. (2022). Engineered Biomaterials to Guide Spheroid Formation, Function, and Fabrication into 3D Tissue Constructs. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.052
Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338
Discher, D. E. (2019). From DNA damage to epithelial integrity: New roles for cell forces. Molecular Biology of the Cell, 30 (16), 1879–1881. https://doi.org/10.1091/mbc.E19-06-0338
Frick, E. M., & Strader, L. C. (2018). Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2), 169–177. https://doi.org/10.1093/jxb/erx298
Frick, E. M., & Strader, L. C. (2018). Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2), 169–177. https://doi.org/10.1093/jxb/erx298
Galie, P. A., Pogoda, K., Tran, K. A., Cēbers, A., & Janmey, P. A. (2024). Magnetoelastic Elastomers and Hydrogels for Studies of Mechanobiology. In B. Doudin, M. Coey, & A. Cēbers (Eds.), Magnetic Microhydrodynamics: An Emerging Research Field (pp. 143-156). Springer International Publishing. https://doi.org/10.1007/978-3-031-58376-6_11
Galie, P. A., Pogoda, K., Tran, K. A., Cēbers, A., & Janmey, P. A. (2024). Magnetoelastic Elastomers and Hydrogels for Studies of Mechanobiology. In B. Doudin, M. Coey, & A. Cēbers (Eds.), Magnetic Microhydrodynamics: An Emerging Research Field (pp. 143-156). Springer International Publishing. https://doi.org/10.1007/978-3-031-58376-6_11
Genin, G. M., Shenoy, V. B., Peng, G. C. Y., & Buehler, M. J. (2017). Integrated multiscale biomaterials experiment and modeling. ACS Biomaterials Science & Engineering, 3(11), 2628–2632. https://doi.org/10.1021/acsbiomaterials.7b00821
Genin, G. M., Shenoy, V. B., Peng, G. C. Y., & Buehler, M. J. (2017). Integrated multiscale biomaterials experiment and modeling. ACS Biomaterials Science & Engineering, 3(11), 2628–2632. https://doi.org/10.1021/acsbiomaterials.7b00821
Goodman, M. B., Haswell, E. S., & Vásquez, V. (2023). Mechanosensitive membrane proteins: Usual and unusual suspects in mediating mechanotransduction. The Journal of general physiology, 155(3). https://doi.org/10.1085/JGP.202213248
Goodman, M. B., Haswell, E. S., & Vásquez, V. (2023). Mechanosensitive membrane proteins: Usual and unusual suspects in mediating mechanotransduction. The Journal of general physiology, 155(3). https://doi.org/10.1085/JGP.202213248
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular plant. https://doi.org/10.1016/j.molp.2022.05.015
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular plant. https://doi.org/10.1016/j.molp.2022.05.015
Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: the multifaceted roles of mechanics. Molecular Plant. https://doi.org/10.1016/J.MOLP.2022.05.015
Hamant, O., & Haswell, E. S. (2017). Life behind the wall: Sensing mechanical cues in plants. BMC Biology, 15 (1),1–9. https://doi.org/10.1186/s12915-017-0403-5
Hamant, O., & Haswell, E. S. (2017). Life behind the wall: Sensing mechanical cues in plants. BMC Biology, 15 (1),1–9. https://doi.org/10.1186/s12915-017-0403-5
Haswell, E. S., & Dixit, R. (2018). Counting what counts: the importance of quantitative approaches to studying plant cell biology. Current Opinion in Plant Biology, 46, A1–A3. https://doi.org/10.1016/j.pbi.2018.10.003
Haswell, E. S., & Dixit, R. (2018). Counting what counts: the importance of quantitative approaches to studying plant cell biology. Current Opinion in Plant Biology, 46, A1–A3. https://doi.org/10.1016/j.pbi.2018.10.003
Heo, S.-J., Cosgrove, B. D., Dai, E. N., & Mauck, R. L. (2018). Mechano-adaptation of the stem cell nucleus. Nucleus, 9(1), 9–19. https://doi.org/10.1080/19491034.2017.1371398
Heo, S.-J., Cosgrove, B. D., Dai, E. N., & Mauck, R. L. (2018). Mechano-adaptation of the stem cell nucleus. Nucleus, 9(1), 9–19. https://doi.org/10.1080/19491034.2017.1371398
Heveran, C. M., & Boerckel, J. D. (2023). Osteocyte Remodeling of the Lacunar-Canalicular System: What’s in a Name? Current osteoporosis reports, 21(1). https://doi.org/10.1007/S11914-022-00766-3
Heveran, C. M., & Boerckel, J. D. (2023). Osteocyte Remodeling of the Lacunar-Canalicular System: What’s in a Name? Current osteoporosis reports, 21(1). https://doi.org/10.1007/S11914-022-00766-3
Holle, A. W., Young, J. L., Van Vliet, K. J., Kamm, R. D., Discher, D., Janmey, P., Spatz, J. P., & Saif, T. (2018). Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Letters,18 (1), 1–8 https://doi.org/10.1021/acs.nanolett.7b04982
Holle, A. W., Young, J. L., Van Vliet, K. J., Kamm, R. D., Discher, D., Janmey, P., Spatz, J. P., & Saif, T. (2018). Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Letters,18 (1), 1–8 https://doi.org/10.1021/acs.nanolett.7b04982
Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094
Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094
Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1
Huang, G., Xu, F., Genin, G. M., & Lu, T. J. (2019). Mechanical microenvironments of living cells: a critical frontier in mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 265–269. https://doi.org/10.1007/s10409-019-00854-1
Jain, R., & Epstein, J. A. (2021). Not all stress is bad for your heart. Science, 374(6565), 264–265. https://doi.org/10.1126/SCIENCE.ABM1858
Jain, R., & Epstein, J. A. (2021). Not all stress is bad for your heart. Science, 374(6565), 264–265. https://doi.org/10.1126/SCIENCE.ABM1858
Janmey, P. A., Fletcher, D. A., & Reinhart-King, C. A. (2020). Stiffness sensing by cells. Physiological Reviews, 100(2), 695–724. https://doi.org/10.1152/physrev.00013.2019
Janmey, P. A., Fletcher, D. A., & Reinhart-King, C. A. (2020). Stiffness sensing by cells. Physiological Reviews, 100(2), 695–724. https://doi.org/10.1152/physrev.00013.2019
Jones, M. L., Dahl, K. N., Lele, T. P., Conway, D. E., Shenoy, V., Ghosh, S., & Szczesny, S. E. (2022). The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of biomechanical engineering, 144(8). https://doi.org/10.1115/1.4053797
Jones, M. L., Dahl, K. N., Lele, T. P., Conway, D. E., Shenoy, V., Ghosh, S., & Szczesny, S. E. (2022). The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. Journal of biomechanical engineering, 144(8). https://doi.org/10.1115/1.4053797
Kang, S., Park, S. E., & Huh, D. D. (2021). Organ-on-a-chip technology for nanoparticle research. Nano Convergence 2021 8:1, 8(1), 1–15. https://doi.org/10.1186/S40580-021-00270-X
Kang, S., Park, S. E., & Huh, D. D. (2021). Organ-on-a-chip technology for nanoparticle research. Nano Convergence 2021 8:1, 8(1), 1–15. https://doi.org/10.1186/S40580-021-00270-X
Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3
Kegelman, C. D., Collins, J. M., Nijsure, M. P., Eastburn, E. A., & Boerckel, J. D. (2020). Gone caving: Roles of the transcriptional regulators yap and taz in skeletal development. In Current Osteoporosis Reports (Vol. 18, Issue 5, pp. 526–540). Springer. https://doi.org/10.1007/s11914-020-00605-3
Kim, H. H.-S., & Lakadamyali, M. (2024). Microscopy methods to visualize nuclear organization in biomechanical studies. Current Opinion in Biomedical Engineering, 100528. https://doi.org/10.1016/j.cobme.2024.100528
Kim, H. H.-S., & Lakadamyali, M. (2024). Microscopy methods to visualize nuclear organization in biomechanical studies. Current Opinion in Biomedical Engineering, 100528. https://doi.org/10.1016/j.cobme.2024.100528
Kim, S., Uroz, M., Bays, J. L., & Chen, C. S. (2021). Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 56(2), 180–191. https://doi.org/10.1016/j.devcel.2020.12.017
Kim, S., Uroz, M., Bays, J. L., & Chen, C. S. (2021). Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 56(2), 180–191. https://doi.org/10.1016/j.devcel.2020.12.017
Kim, W., & Jain, R. (2020). Picking winners and losers: Cell competition in tissue development and homeostasis. Trends in Genetics, 36 (7), 490–498. https://doi.org/10.1016/j.tig.2020.04.003
Kim, W., & Jain, R. (2020). Picking winners and losers: Cell competition in tissue development and homeostasis. Trends in Genetics, 36 (7), 490–498. https://doi.org/10.1016/j.tig.2020.04.003
Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005
Lakadamyali, M. (2022). Single nucleosome tracking to study chromatin plasticity. Current Opinion in Cell Biology, 74, 23–28. https://doi.org/10.1016/J.CEB.2021.12.005
Lakadamyali, M. (2024). From feulgen to modern methods: marking a century of DNA imaging advances. Histochemistry and Cell Biology. https://doi.org/10.1007/s00418-024-02291-z
Lakadamyali, M. (2024). From feulgen to modern methods: marking a century of DNA imaging advances. Histochemistry and Cell Biology. https://doi.org/10.1007/s00418-024-02291-z [Review]
Lakadamyali, M., & Cosma, M. P. (2020). Visualizing the genome in high resolution challenges our textbook understanding. Nature Methods, 17(4), 371–379. https://doi.org/10.1038/s41592-020-0758-3
Lakadamyali, M., & Cosma, M. P. (2020). Visualizing the genome in high resolution challenges our textbook understanding. Nature Methods, 17(4), 371–379. https://doi.org/10.1038/s41592-020-0758-3
Linari, M., Piazzesi, G., Pertici, I., Dantzig, J. A., Goldman, Y. E., & Lombardi, V. (2020). Straightening out the elasticity of myosin cross-bridges. Biophysical Journal, 118(5), 994–1002. https://doi.org/10.1016/j.bpj.2020.01.002
Linari, M., Piazzesi, G., Pertici, I., Dantzig, J. A., Goldman, Y. E., & Lombardi, V. (2020). Straightening out the elasticity of myosin cross-bridges. Biophysical Journal, 118(5), 994–1002. https://doi.org/10.1016/j.bpj.2020.01.002
Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947
Liu, S., Tao, R., Wang, M., Tian, J., Genin, G. M., Lu, T. J., & Xu, F. (2019). Regulation of cell behavior by hydrostatic pressure. Applied Mechanics Reviews, 71(4). https://doi.org/10.1115/1.4043947
Loneker, A. E., & Wells, R. G. (2021). Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers, 13(17). https://doi.org/10.3390/CANCERS13174275
Loneker, A. E., & Wells, R. G. (2021). Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers, 13(17). https://doi.org/10.3390/CANCERS13174275
Madl, C. M. (2023). Accelerating aging with dynamic biomaterials: Recapitulating aged tissue phenotypes in engineered platforms. iScience. https://doi.org/10.1016/j.isci.2023.106825
Madl, C. M. (2023). Accelerating aging with dynamic biomaterials: Recapitulating aged tissue phenotypes in engineered platforms. iScience. https://doi.org/10.1016/j.isci.2023.106825
Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064
Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064
Moharrer, Y., & Boerckel, J. D. (2021). Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone, 153, 116104. https://doi.org/10.1016/J.BONE.2021.116104
Moharrer, Y., & Boerckel, J. D. (2021). Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone, 153, 116104. https://doi.org/10.1016/J.BONE.2021.116104
Muir, V. G., & Burdick, J. A. (2020). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923
Muir, V. G., & Burdick, J. A. (2020). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923
Nebenführ, A., & Dixit, R. (2018). Kinesins and Myosins: Molecular motors that coordinate cellular functions in plants. Annual Review of Plant Biology, 69(1). 329-361. https://doi.org/10.1146/annurev-arplant-042817-040024
Nebenführ, A., & Dixit, R. (2018). Kinesins and Myosins: Molecular motors that coordinate cellular functions in plants. Annual Review of Plant Biology, 69(1). 329-361. https://doi.org/10.1146/annurev-arplant-042817-040024
Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894
Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960–965. https://doi.org/10.1126/science.aaw7894
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Patteson, A. E., Asp, M. E., & Janmey, P. A. (2022). Materials science and mechanosensitivity of living matter. Applied Physics Reviews, 9(1), 011320. https://doi.org/10.1063/5.0071648
Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007
Pfeifer, C. R., Vashisth, M., Xia, Y., & Discher, D. E. (2019). Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: A brief review. Essays in Biochemistry 63(5), 569–577. https://doi.org/10.1042/EBC20190007
Pogoda, K., & Janmey, P. A. (2018). Glial tissue mechanics and mechanosensing by glial cells. Frontiers in Cellular Neuroscience, 12, 25. https://doi.org/10.3389/fncel.2018.00025
Pogoda, K., & Janmey, P. A. (2018). Glial tissue mechanics and mechanosensing by glial cells. Frontiers in Cellular Neuroscience, 12, 25. https://doi.org/10.3389/fncel.2018.00025
Pogoda, K., & Janmey, P. A. (2023). Transmit and protect: The mechanical functions of intermediate filaments. Current Opinion in Cell Biology, 85, 102281. https://doi.org/10.1016/j.ceb.2023.102281
Pogoda, K., & Janmey, P. A. (2023). Transmit and protect: The mechanical functions of intermediate filaments. Current Opinion in Cell Biology, 85, 102281. https://doi.org/10.1016/j.ceb.2023.102281
Powers, S. K., & Strader, L. C. (2020). Regulation of auxin transcriptional responses. Developmental Dynamics, 249(4), 483–495. https://doi.org/10.1002/dvdy.139
Powers, S. K., & Strader, L. C. (2020). Regulation of auxin transcriptional responses. Developmental Dynamics, 249(4), 483–495. https://doi.org/10.1002/dvdy.139
Radin, I. and Haswell, E. S. (2022). Looking at mechanobiology through an evolutionary lens. Current Opinion in Plant Biology, 65, 102112. https://doi.org/10.1016/J.PBI.2021.102112
Radin, I. and Haswell, E. S. (2022). Looking at mechanobiology through an evolutionary lens. Current Opinion in Plant Biology, 65, 102112. https://www.sciencedirect.com/science/article/pii/S1369526621001126?dgcid=author
Roeder, A. H. K., Otegui, M. S., Dixit, R., Anderson, C. T., Faulkner, C., Zhang, Y., Harrison, M. J., Kirchhelle, C., Goshima, G., Coate, J. E., Doyle, J. J., Hamant, O., Sugimoto, K., Dolan, L., Meyer, H., Ehrhardt, D. W., Boudaoud, A., & Messina, C. (2022). Fifteen compelling open questions in plant cell biology. The Plant Cell, 34(1), 72–102. https://doi.org/10.1093/PLCELL/KOAB225
Santini, G. T., Shah, P. P., Karnay, A., & Jain, R. (2022). Aberrant chromatin organization at the nexus of laminopathy disease pathways. https://doi.org/10.1080/19491034.2022.2153564
Schlegel, A. M., & Haswell, E. S. (2020). Plant biomechanics: no pain, no gain for birch tree stems. Current Biology, 30(4), R164–R166. https://doi.org/10.1016/j.cub.2019.12.069
Schlegel, A. M., & Haswell, E. S. (2020). Plant biomechanics: no pain, no gain for birch tree stems. Current Biology, 30(4), R164–R166. https://doi.org/10.1016/j.cub.2019.12.069
Shah, P. P., Santini, G. T., Shen, K. M., & Jain, R. (2023). InterLINCing Chromatin Organization and Mechanobiology in Laminopathies. Current Cardiology Reports, 1-8. https://doi.org/10.1007/s11886-023-01853-2
Shah, P. P., Santini, G. T., Shen, K. M., & Jain, R. (2023). InterLINCing Chromatin Organization and Mechanobiology in Laminopathies. Current Cardiology Reports, 1-8. https://doi.org/10.1007/s11886-023-01853-2
Shakiba, D., Genin, G. M., & Zustiak, S. P. (2023). Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: mechanistic insights and biomaterial platforms. Advanced Drug Delivery Reviews, 114771. https://doi.org/https://doi.org/10.1016/j.addr.2023.114771
Shakiba, D., Genin, G. M., & Zustiak, S. P. (2023). Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: mechanistic insights and biomaterial platforms. Advanced Drug Delivery Reviews, 114771. https://doi.org/https://doi.org/10.1016/j.addr.2023.114771
Uchida, K., Scarborough, E. A., & Prosser, B. L. (2021). Cardiomyocyte Microtubules: Control of mechanics, transport, and remodeling. Annual Review of Physiology, 84(1), 1–27. https://doi.org/10.1146/ANNUREV-PHYSIOL-062421-040656
Uchida, K., Scarborough, E. A., & Prosser, B. L. (2021). Cardiomyocyte Microtubules: Control of mechanics, transport, and remodeling. Annual Review of Physiology, 84(1), 1–27. https://doi.org/10.1146/ANNUREV-PHYSIOL-062421-040656
Wang, C., Ramahdita, G., Genin, G., Huebsch, N., & Ma, Z. (2023). Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. Biophysics Reviews, 4(1), 011314. https://doi.org/10.1063/5.0141269
Wang, C., Ramahdita, G., Genin, G., Huebsch, N., & Ma, Z. (2023). Dynamic mechanobiology of cardiac cells and tissues: Current status and future perspective. Biophysics Reviews, 4(1), 011314. https://doi.org/10.1063/5.0141269
Wang, M., Ivanovska, I., Vashisth, M., & Discher, D. E. (2022). Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioengineering, 6(2), 021504. https://doi.org/10.1063/5.0080392
Woodworth, M. A., & Lakadamyali, M. (2024). Toward a comprehensive view of gene architecture during transcription. Current Opinion in Genetics & Development, 85, 102154. https://doi.org/10.1016/j.gde.2024.102154
Woodworth, M. A., & Lakadamyali, M. (2024). Toward a comprehensive view of gene architecture during transcription. Current Opinion in Genetics & Development, 85, 102154. https://doi.org/10.1016/j.gde.2024.102154
Xu, F., Guo, H., Zustiak, S.P. and Genin, G.M. (2023). Targeting the Physical Microenvironment of Tumors for Drug and Immunotherapy. Advanced Drug Delivery Reviews, p.114768. https://doi.org/10.1016/j.addr.2023.114768
Xu, F., Guo, H., Zustiak, S.P. and Genin, G.M. (2023). Targeting the Physical Microenvironment of Tumors for Drug and Immunotherapy. Advanced Drug Delivery Reviews, p.114768. https://doi.org/10.1016/j.addr.2023.114768
Xu, K. L., Mauck, R. L., & Burdick, J. A. (2023). Modeling development using hydrogels. Development, 150(13). https://doi.org/doi.org/10.1242/dev.201527
Xu, K. L., Mauck, R. L., & Burdick, J. A. (2023). Modeling development using hydrogels. Development, 150(13). https://doi.org/doi.org/10.1242/dev.201527 *Review Article*