Publications

Publications

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, In Press. https://doi.org/10.5281/ZENODO.4562309

Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, https://doi.org/10.5281/ZENODO.4562309

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116

Alisafaei, F., Mandal, K., Saldanha, R., Swoger, M., Yang, H., Shi, X., Guo, M., Hehnly, H., Castañeda, C. A., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2024). Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Communications Biology, 7(1), 658. https://doi.org/10.1038/s42003-024-06366-4

Alisafaei, F., Mandal, K., Saldanha, R., Swoger, M., Yang, H., Shi, X., Guo, M., Hehnly, H., Castañeda, C. A., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2024). Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Communications Biology, 7(1), 658. https://doi.org/10.1038/s42003-024-06366-4

Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829 

Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829 

Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154 

Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154 

Almeida, J., Mathur, J., Lee, Y. L., Sarker, B., & Pathak, A. (2023). Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E22-10-0469

Almeida, J., Mathur, J., Lee, Y. L., Sarker, B., & Pathak, A. (2023). Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Molecular Biology of the Cellhttps://doi.org/10.1091/MBC.E22-10-0469

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527

Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., & Shenoy, V. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1

Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., Shenoy, V., Lammerding, J., & Prosser, B. L. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stems cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stem cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116

Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI

Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI

Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192

Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192

Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6

Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117

Bilkey, N., Li, H., Borodinov, N., Ievlev, A. v., Ovchinnikova, O. S., Dixit, R., & Foston, M. (2022). Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative Plant Biology, 3, e31. https://doi.org/10.1017/QPB.2022.20

Bilkey, N., Li, H., Borodinov, N., Ievlev, A. v., Ovchinnikova, O. S., Dixit, R., & Foston, M. (2022). Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative Plant Biology, 3, e31. https://doi.org/10.1017/QPB.2022.20

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853

Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Boyle, M. J., Radhakrishnan, R., & Composto, R. J. (2024). Molecular Dynamics Study of the Effect of Grafting Density on Ion Diffusivity in a MARTINI Coarse-Grained Strong Polyelectrolyte Brush. Macromolecules. https://doi.org/10.1021/acs.macromol.4c01018

Boyle, M. J., Radhakrishnan, R., & Composto, R. J. (2024). Molecular Dynamics Study of the Effect of Grafting Density on Ion Diffusivity in a MARTINI Coarse-Grained Strong Polyelectrolyte Brush. Macromolecules. https://doi.org/10.1021/acs.macromol.4c01018

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

**  NOTE:  see press release for this publication HERE.

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Caporizzo, M. A., Chen, C. Y., Bedi, K., Margulies, K. B., & Prosser, B. L. (2020). Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation, 141(11), 902–915. https://doi.org/10.1161/CIRCULATIONAHA.119.043930

Caporizzo, M. A., Chen, C. Y., Bedi, K., Margulies, K. B., & Prosser, B. L. (2020). Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation, 141(11), 902–915. https://doi.org/10.1161/CIRCULATIONAHA.119.043930

Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038

Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877 

Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877 

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0

Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Alyafei, N. H. K., Indana, D., Slyman, R., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2023). Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. Nature Materials, 1-12. https://doi.org/10.1038/s41563-023-01716-9

Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Alyafei, N. H. K., Indana, D., Slyman, R., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2023). Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. Nature Materials, 1-12. https://doi.org/10.1038/s41563-023-01716-9

Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930 

Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930 

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750

Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9

Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9

Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2

Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2

Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947

Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575

Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909

Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761

Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501 

Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501 

Collins, J. M., Lang, A., Parisi, C., Moharrer, Y., Nijsure, M. P., Kim, J. H., Szeto, G. L., Qin, L., Gottardi, R. L., Dyment, N. A., Nowlan, N. C., & Boerckel, J. D. (2023). YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. bioRxiv, 2023.2001.2020.524918-522023.524901.524920.524918. https://doi.org/10.1101/2023.01.20.524918

Collins, J. M., Lang, A., Parisi, C., Moharrer, Y., Nijsure, M. P., Kim, J. H., Szeto, G. L., Qin, L., Gottardi, R. L., Dyment, N. A., Nowlan, N. C., & Boerckel, J. D. (2023). YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. bioRxiv, 2023.2001.2020.524918-522023.524901.524920.524918. https://doi.org/10.1101/2023.01.20.524918 

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662

Cottone, A. M., Jeong, A., Nguyen, Y., McGonigle, J., Rosario, M., & Wells, R. (2024). Examining design features of a Research Experience for Teachers in mechanobiology towards promoting K-12 STEM integration. Proceedings of the 18th International Conference of the Learning Sciences. , 1670-1673.

Cottone, A. M., Jeong, A., Nguyen, Y., McGonigle, J., Rosario, M., & Wells, R. (2024). Examining design features of a Research Experience for Teachers in mechanobiology towards promoting K-12 STEM integration. Proceedings of the 18th International Conference of the Learning Sciences. , 1670-1673. https://repository.isls.org/bitstream/1/10780/1/ICLS2024_1670-1673.pdf

Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146

Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256

Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through Interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dooling, L. J., Andrechak, J. C., Hayes, B. H., Kadu, S., Zhang, W., Pan, R., Vashisth, M., Irianto, J., Alvey, C. M., Ma, L. & Discher, D. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nature Biomedical Engineering, 1-16. https://doi.org/10.1038/s41551-023-01031-3 

Dooling, L. J., Andrechak, J. C., Hayes, B. H., Kadu, S., Zhang, W., Pan, R., Vashisth, M., Irianto, J., Alvey, C. M., Ma, L. & Discher, D. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nature Biomedical Engineering, 1-16. https://doi.org/10.1038/s41551-023-01031-3 

Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792

Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792

Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106

Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106

Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344 

Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344 

Flynn, A. J., Miller, K., Codjoe, J. M., King, M. R., & Haswell, E. S. (2023). Mechanosensitive ion channels MSL8, MSL9, and MSL10 have environmentally sensitive intrinsically disordered regions with distinct biophysical characteristics in vitro. Plant Direct, 7(8), e515. https://doi.org/10.1002/pld3.515  

Flynn, A. J., Miller, K., Codjoe, J. M., King, M. R., & Haswell, E. S. (2023). Mechanosensitive ion channels MSL8, MSL9, and MSL10 have environmentally sensitive intrinsically disordered regions with distinct biophysical characteristics in vitro. Plant Direct, 7(8), e515. https://doi.org/10.1002/pld3.515  

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116

Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y

Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y

Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228

Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228

Galarraga, J. H., Dhand, A. P., Bruce P.  Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218

Galarraga, J. H., Dhand, A. P., Bruce P.  Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218

Ganguly, A., DeMott, L., Zhu, C., McClosky, D. D., Anderson, C. T., & Dixit, R. (2018). Importin-β directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell, 44(5), 642-651.e5. https://doi.org/10.1016/j.devcel.2018.01.027

Ganguly, A., DeMott, L., Zhu, C., McClosky, D. D., Anderson, C. T., & Dixit, R. (2018). Importin-β directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell, 44(5), 642-651.e5. https://doi.org/10.1016/j.devcel.2018.01.027

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19

Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K

Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K

Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591 

Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591 

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Gong, Z., van den Dries, K., Migueles-Ramírez, R. A., Wiseman, P. W., Cambi, A., & Shenoy, V. B. (2023). Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nature Communications, 14(1), 2902. https://doi.org/10.1038/s41467-023-38598-z 

Gong, Z., van den Dries, K., Migueles-Ramírez, R. A., Wiseman, P. W., Cambi, A., & Shenoy, V. B. (2023). Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nature Communications, 14(1), 2902. https://doi.org/10.1038/s41467-023-38598-z 

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318

Gupta, K., Llewellyn, J., Roberts, E., Liu, C., Naji, A., Assoian, R. K., & Wells, R. G. (2024). The biliary atresia susceptibility gene, EFEMP1, regulates extrahepatic bile duct elastic fiber formation and mechanics. JHEP Reports, 101215. https://doi.org/https://doi.org/10.1016/j.jhepr.2024.101215

Gupta, K., Llewellyn, J., Roberts, E., Liu, C., Naji, A., Assoian, R. K., & Wells, R. G. (2024). The biliary atresia susceptibility gene, EFEMP1, regulates extrahepatic bile duct elastic fiber formation and mechanics. JHEP Reports, 101215. https://doi.org/https://doi.org/10.1016/j.jhepr.2024.101215

Gupta, R., Gupta, P., Wang, S., Melnykov, A., Jiang, Q., Seth, A., Wang, Z., Morrissey, J. J., George, I., Gandra, S., Sinha, P., Storch, G. A., Parikh, B. A., Genin, G. M., & Singamaneni, S. (2023). Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nature Biomedical Engineering 2023, 1–15. https://doi.org/10.1038/s41551-022-01001-1

Gupta, R., Gupta, P., Wang, S., Melnykov, A., Jiang, Q., Seth, A., Wang, Z., Morrissey, J. J., George, I., Gandra, S., Sinha, P., Storch, G. A., Parikh, B. A., Genin, G. M., & Singamaneni, S. (2023). Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nature Biomedical Engineering 2023, 1–15. https://doi.org/10.1038/s41551-022-01001-1

Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113

Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113

Hallström, G. F., Jones, D. L., Locke, R. C., Bonnevie, E. D., Kim, S. Y., Laforest, L., Garcia, D. C., & Mauck, R. L. (2023). Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Molecular Biology of the Cell, mbc. E22-12-0543. https://doi.org/10.1091/mbc.E22-12-0543

Hallström, G. F., Jones, D. L., Locke, R. C., Bonnevie, E. D., Kim, S. Y., Laforest, L., Garcia, D. C., & Mauck, R. L. (2023). Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Molecular Biology of the Cell, mbc. E22-12-0543. https://doi.org/10.1091/mbc.E22-12-0543

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459

Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800

Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800

Hayes, B. H., Zhu, P. K., Wang, M., Pfeifer, C. R., Xia, Y., Phan, S., Andrechak, J. C., Du, J., Tobin, M. P., Anlas, A., Dooling, L. J., Vashisth, M., Irianto, J., Lampson, M. A., & Discher, D. E. (2023). Confinement plus Myosin-II suppression maximizes heritable loss of chromosomes, as revealed by live-cell ChReporters. Journal of Cell Science, jcs. 260753. https://doi.org/10.1242/jcs.260753 

Hayes, B. H., Zhu, P. K., Wang, M., Pfeifer, C. R., Xia, Y., Phan, S., Andrechak, J. C., Du, J., Tobin, M. P., Anlas, A., Dooling, L. J., Vashisth, M., Irianto, J., Lampson, M. A., & Discher, D. E. (2023). Confinement plus Myosin-II suppression maximizes heritable loss of chromosomes, as revealed by live-cell ChReporters. Journal of Cell Science, jcs. 260753. https://doi.org/10.1242/jcs.260753 

Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582

Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5
**  NOTE:  see press release for this publication HERE.

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).

Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A., Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083

Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A.Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083

Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583 

Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583 

**  NOTE:  see press release for this publication HERE.

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725 

Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725 

Hwang, P. Y., Mathur, J., Cao, Y., Almeida, J., Ye, J., Morikis, V., Cornish, D., Clarke, M., Stewart, S. A., Pathak, A., & Longmore, G. D. (2023). A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Developmental Cell, 58(1), 34-50.e9. https://doi.org/10.1016/J.DEVCEL.2022.12.005

Hwang, P. Y., Mathur, J., Cao, Y., Almeida, J., Ye, J., Morikis, V., Cornish, D., Clarke, M., Stewart, S. A., Pathak, A., & Longmore, G. D. (2023). A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Developmental Cell, 58(1), 34-50.e9. https://doi.org/10.1016/J.DEVCEL.2022.12.005

Indana, D., Zakharov, A., Lim, Y., Dunn, A. R., Bhutani, N., Shenoy, V. B., & Chaudhuri, O. (2024). Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell, 31(5), 640-656.e648. https://doi.org/10.1016/j.stem.2024.03.016

Indana, D., Zakharov, A., Lim, Y., Dunn, A. R., Bhutani, N., Shenoy, V. B., & Chaudhuri, O. (2024). Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell, 31(5), 640-656.e648. https://doi.org/10.1016/j.stem.2024.03.016

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091

Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964

Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
**  NOTE:  see press release for this publication HERE.

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871

Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871

Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2

Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2

Jones, D. L., Hallström, G. F., Jiang, X., Locke, R. C., Evans, M. K., Bonnevie, E. D., Srikumar, A., Leahy, T. P., Nijsure, M. P., & Boerckel, J. D. (2023). Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proceedings of the National Academy of Sciences, 120(22), e2211947120. https://doi.org/10.1073/pnas.2211947120

Jones, D. L., Hallström, G. F., Jiang, X., Locke, R. C., Evans, M. K., Bonnevie, E. D., Srikumar, A., Leahy, T. P., Nijsure, M. P., Boerckel, J. D., Mauck, R.L., Dyment, N.A. (2023). Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proceedings of the National Academy of Sciences, 120(22), e2211947120. https://doi.org/10.1073/pnas.2211947120

Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., & Shenoy, V. B. (2024). Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nature Communications, 15(1), 4338. https://doi.org/10.1038/s41467-024-48698-z

Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., & Shenoy, V. B. (2024). Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nature Communications, 15(1), 4338. https://doi.org/10.1038/s41467-024-48698-z

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane M., Brafford P., Herlyn M., Speicher D.W, Wargo J., Tetzlaff M., Haydu L., Raj A., Shenoy V.B., Cukierman E., and Weeraratna A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane, M., Brafford, P., Herlyn, M., Speicher, D.W, Wargo, J., Tetzlaff, M., Haydu, L., Raj, A., Shenoy, V.B., Cukierman, E., and Weeraratna, A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/doi.org/10.1021/acsbiomaterials.3c00147

Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00147

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182

Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476 

Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476

Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270

Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Labastide, J. A., Quint, D. A., Cullen, R. K., Maelfeyt, B., Ross, J. L., & Gopinathan, A. (2023). Non-specific cargo–filament interactions slow down motor-driven transport. The European Physical Journal E, 46(12), 134. https://doi.org/10.1140/epje/s10189-023-00394-4

Labastide, J. A., Quint, D. A., Cullen, R. K., Maelfeyt, B., Ross, J. L., & Gopinathan, A. (2023). Non-specific cargo–filament interactions slow down motor-driven transport. The European Physical Journal E, 46(12), 134. https://doi.org/10.1140/epje/s10189-023-00394-4

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Lang, A., Benn, A., Wolter, A., Balcaen, T., Collins, J., Kerckhofs, G., Zwijsen, A., & Boerckel, J. D. (2023). Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth. bioRxiv. https://doi.org/10.1101/2023.01.07.522994

Lang, A., Benn, A., Wolter, A., Balcaen, T., Collins, J., Kerckhofs, G., Zwijsen, A., & Boerckel, J. D. (2023). Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth. bioRxiv. https://doi.org/10.1101/2023.01.07.522994

Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642

Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642

Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120

Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058

Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124

Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124

Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567

Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567

Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104

Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114

Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027

Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705

Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705

Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705

Llewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of etiology. JHEP Reports, 100760. https://doi.org/10.1016/j.jhepr.2023.100760

Llewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of etiology. JHEP Reports, 100760. https://doi.org/10.1016/j.jhepr.2023.100760

Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160 

Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160 

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992 

Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992 

Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524 

Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524 

Loneker, A. E., Alisafaei, F., Kant, A., Li, D., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2023). Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of the National Academy of Sciences, 120(16), e2216811120. https://doi.org/10.1073/pnas.2216811120

Loneker, A. E., Alisafaei, F., Kant, A., Li, D., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2023). Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of the National Academy of Sciences, 120(16), e2216811120. https://doi.org/10.1073/pnas.2216811120

Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777

Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Maksaev, G., Shoots, J. M., Ohri, S., & Haswell, E. S. (2018). Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant Direct, 2(6), e00059. https://doi.org/10.1002/pld3.59

Maksaev, G., Shoots, J. M., Ohri, S., & Haswell, E. S. (2018). Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant Direct, 2(6), e00059. https://doi.org/10.1002/pld3.59

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065

Mason, D. E., Goeckel, M. E., Vega, S. L., Wu, P.-H., Johnson, D., Heo, S.-J., Wirtz, D., Burdick, J. A., Wood, L., Chow, B. Y., Stratman, A. N., & Boerckel, J. D. (2023). Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis. eLife(12:RP86668). https://doi.org/10.7554/eLife.86668.1

Mason, D. E., Goeckel, M. E., Vega, S. L., Wu, P.-H., Johnson, D., Heo, S.-J., Wirtz, D., Burdick, J. A., Wood, L., Chow, B. Y., Stratman, A. N., & Boerckel, J. D. (2023). Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis. eLife(12:RP86668). https://doi.org/10.7554/eLife.86668.1

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. In bioRxiv (p. 2020.12.24.424334). bioRxiv. https://doi.org/10.1101/2020.12.24.424334

Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. Molecular Biology of the Cell, 32 (9). https://doi.org/10.1091/mbc.E20-11-0744

McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196

McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McEvoy, E., Sneh, T., Moeendarbary, E., Javanmardi, Y., Efimova, N., Yang, C., Marino-Bravante, G. E., Chen, X., Escribano, J., Spill, F., Garcia-Aznar, J. M., Weeraratna, A. T., Svitkina, T. M., Kamm, R. D., & Shenoy, V. B. (2022). Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nature Communications 2022 13:1, 13(1), 1–14. https://doi.org/10.1038/s41467-022-34701-y

McEvoy, E., Sneh, T., Moeendarbary, E., Javanmardi, Y., Efimova, N., Yang, C., Marino-Bravante, G. E., Chen, X., Escribano, J., Spill, F., Garcia-Aznar, J. M., Weeraratna, A. T., Svitkina, T. M., Kamm, R. D., & Shenoy, V. B. (2022). Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nature Communications 2022 13:1, 13(1), 1–14. https://doi.org/10.1038/s41467-022-34701-y

McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007

McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Sherman, L., Rameshwar, P., & Arinzeh, T. L. (2023). Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.37496

Menezes, R., Sherman, L., Rameshwar, P., & Arinzeh, T. L. (2023). Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.37496

Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115

Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115

Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017

Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905

Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033

Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033

Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298

Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298

Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/https://doi.org/10.1002/adhm.202401550

Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/10.1002/adhm.202401550

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7).https://advances.sciencemag.org/content/7/11/eabe9446

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7). https://advances.sciencemag.org/content/7/11/eabe9446

Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004

Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009

Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120

Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6

Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E. (2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167

Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E.(2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8

Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska‐Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska-Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143.  https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726

Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486 

Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486 

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278

Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044

Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006

Pyrpassopoulos, S., Gicking, A. M., Zaniewski, T. M., Hancock, W. O., & Ostap, E. M. (2023). KIF1A is kinetically tuned to be a superengaging motor under hindering loads. Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2216903120-e2216903120. https://doi.org/10.1073/PNAS.2216903120/SUPPL_FILE/PNAS.2216903120.SAPP.PDF 

Pyrpassopoulos, S., Gicking, A. M., Zaniewski, T. M., Hancock, W. O., & Ostap, E. M. (2023). KIF1A is kinetically tuned to be a superengaging motor under hindering loads. Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2216903120-e2216903120. https://doi.org/10.1073/PNAS.2216903120/SUPPL_FILE/PNAS.2216903120.SAPP.PDF 

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310

Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310

**  NOTE:  see press release for this publication HERE.

Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4 

Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4 

Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026

Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026

Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013

Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001

Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217 

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007

Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010

Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117

Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings Of The National Academy Of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2

Seth, A., Liu, Y., Gupta, R., Wang, Z., Mittal, E., Kolla, S., Rathi, P., Gupta, P., Parikh, B. A., & Genin, G. M. (2023). Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. Nano Letters. https://doi.org/10.1021/acs.nanolett.3c03789

Seth, A., Liu, Y., Gupta, R., Wang, Z., Mittal, E., Kolla, S., Rathi, P., Gupta, P., Parikh, B. A., & Genin, G. M. (2023). Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. Nano Letters. https://doi.org/10.1021/acs.nanolett.3c03789

Shah, P. P., Keough, K. C., Gjoni, K., Santini, G. T., Abdill, R. J., Wickramasinghe, N. M., Dundes, C. E., Karnay, A., Chen, A., Salomon, R. E. A., Walsh, P. J., Nguyen, S. C., Whalen, S., Joyce, E. F., Loh, K. M., Dubois, N., Pollard, K. S., & Jain, R. (2023). An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biology, 24(1), 1-35. https://doi.org/10.1186/S13059-023-02849-5

Shah, P. P., Keough, K. C., Gjoni, K., Santini, G. T., Abdill, R. J., Wickramasinghe, N. M., Dundes, C. E., Karnay, A., Chen, A., Salomon, R. E. A., Walsh, P. J., Nguyen, S. C., Whalen, S., Joyce, E. F., Loh, K. M., Dubois, N., Pollard, K. S., & Jain, R. (2023). An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biology, 24(1), 1-35. https://doi.org/10.1186/S13059-023-02849-5

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17. https://doi.org/10.1016/j.stem.2020.12.016

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17.     https://doi.org/10.1016/j.stem.2020.12.016

**  NOTE:  new video for this publication HERE.

Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941

Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941

Shiraishi, K., Shah, P. P., Morley, M. P., Loebel, C., Santini, G. T., Katzen, J., Basil, M. C., Lin, S. M., Planer, J. D., Cantu, E., Jones, D. L., Nottingham, A. N., Li, S., Cardenas-Diaz, F. L., Zhou, S., Burdick, J. A., Jain, R., & Morrisey, E. E. (2023). Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell. https://doi.org/https://doi.org/10.1016/j.cell.2023.02.010

Shiraishi, K., Shah, P. P., Morley, M. P., Loebel, C., Santini, G. T., Katzen, J., Basil, M. C., Lin, S. M., Planer, J. D., Cantu, E., Jones, D. L., Nottingham, A. N., Li, S., Cardenas-Diaz, F. L., Zhou, S., Burdick, J. A., Jain, R., & Morrisey, E. E. (2023). Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell. https://doi.org/10.1016/j.cell.2023.02.010

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167

Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677

Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677

Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279 

Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279 

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019

Tang, Q., Sensale, S., Bond, C., Xing, J., Qiao, A., Hugelier, S., Arab, A., Arya, G., & Lakadamyali, M. (2023). Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Current Biology. https://doi.org/10.1016/j.cub.2023.10.068

Tang, Q., Sensale, S., Bond, C., Xing, J., Qiao, A., Hugelier, S., Arab, A., Arya, G., & Lakadamyali, M. (2023). Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Current Biology. https://doi.org/10.1016/j.cub.2023.10.068

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037

Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J. & Discher, D. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, mbc. E23-06-0207. https://doi.org/10.1091/mbc.E23-06-0207

Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J. & Discher, D. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, mbc. E23-06-0207. https://doi.org/10.1091/mbc.E23-06-0207

Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J., & Discher, D. E. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, 34(13), br19. https://doi.org/10.1091/mbc.E23-06-0207

Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J., & Discher, D. E. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, 34(13), br19. https://doi.org/10.1091/mbc.E23-06-0207

Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659

Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659 

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005

Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1 

Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1 

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118/-/DCSUPPLEMENTAL

Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5 

Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5 

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract

Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Wang, M., Phan, S., Hayes, B. H., & Discher, D. E. (2023). Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma, 1-16. https://doi.org/10.1007/s00412-023-00800-y 

Wang, M., Phan, S., Hayes, B. H., & Discher, D. E. (2023). Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma, 1-16. https://doi.org/10.1007/s00412-023-00800-y 

Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525

Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525

Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258

Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258

Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2

Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009

Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161

Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100

Xu, K. L., Di Caprio, N., Fallahi, H., Dehghany, M., Davidson, M. D., Laforest, L., Cheung, B. C., Zhang, Y., Wu, M., Shenoy, V., Han, L., Mauck, R. L., & Burdick, J. A. (2024). Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nature Communications, 15(1), 2766. https://doi.org/10.1038/s41467-024-46774-y

Xu, K. L., Di Caprio, N., Fallahi, H., Dehghany, M., Davidson, M. D., Laforest, L., Cheung, B. C., Zhang, Y., Wu, M., Shenoy, V., Han, L., Mauck, R. L., & Burdick, J. A. (2024). Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nature Communications, 15(1), 2766. https://doi.org/10.1038/s41467-024-46774-y

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237

Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237

Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688

Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues (Adv. Mater. 48/2020). Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues. Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35