Abaci, A., & Guvendiren, M. (2020). Designing decellularized extracellular matrix‐based bioinks for 3D bioprinting. Advanced Healthcare Materials, 2000734. https://doi.org/10.1002/adhm.202000734
Abaci, A., & Guvendiren, M. (2020). Designing decellularized extracellular matrix‐based bioinks for 3D bioprinting. Advanced Healthcare Materials, 2000734. https://doi.org/10.1002/adhm.202000734
Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, In Press. https://doi.org/10.5281/ZENODO.4562309
Adebowale, K., Gong, Z., Hou, J. C., Wisdom, K. M., Garbett, D., Lee, H., Nam, S., Meyer, T., Odde, D., Shenoy, V. B., & Chaudhuri, O. (2021). Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. NATURE MATERIALS, https://doi.org/10.5281/ZENODO.4562309
Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114
Ahmadzadeh, H., Webster, M. R., Behera, R., Valencia, A. M. J., Wirtz, D., Weeraratna, A. T., & Shenoy, V. B. (2017). Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1617–E1626. https://doi.org/10.1073/pnas.1617037114
Al-Mosleh, S., Gopinathan, A., Santangelo, C. D., Huang, K. C., & Rojas, E. R. (2022). Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth. https://doi.org/10.1073/pnas
Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024
Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024
Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116
Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13200–13209. https://doi.org/10.1073/pnas.1902035116
Alisafaei, F., Mandal, K., Saldanha, R., Swoger, M., Yang, H., Shi, X., Guo, M., Hehnly, H., Castañeda, C. A., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2024). Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Communications Biology, 7(1), 658. https://doi.org/10.1038/s42003-024-06366-4
Alisafaei, F., Mandal, K., Saldanha, R., Swoger, M., Yang, H., Shi, X., Guo, M., Hehnly, H., Castañeda, C. A., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2024). Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Communications Biology, 7(1), 658. https://doi.org/10.1038/s42003-024-06366-4
Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829
Alisafaei, F., Mandal, K., Swoger, M., Yang, H., Guo, M., Janmey, P. A., Patteson, A. E., & Shenoy, V. B. (2022). Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner. bioRxiv, 2022.2004.2002.486829-482022.486804.486802.486829. https://doi.org/10.1101/2022.04.02.486829
Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154
Alisafaei, F., Shakiba, D., Iannucci, L. E., Davidson, M. D., Pryse, K. M., Chao, P.-H. G., Burdick, J. A., Lake, S. P., Elson, E. L., Shenoy, V. B., Genin, G. M.(2022). Tension anisotropy drives phenotypic transitions of cells via two-way cell-ECM feedback. bioRxiv, 2022.2003.2013.484154-482022.484103.484113.484154. https://doi.org/10.1101/2022.03.13.484154
Almeida, J., Mathur, J., Lee, Y. L., Sarker, B., & Pathak, A. (2023). Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E22-10-0469
Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527
Almeida, P., Janmey, P. A., & Kouwer, P. H. J. (2021). Fibrous hydrogels under multi‐axial deformation: Persistence length as the main determinant of compression softening. Advanced Functional Materials, 2010527. https://doi.org/10.1002/adfm.202010527
Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., & Shenoy, V. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1
Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., Shenoy, V., Lammerding, J., & Prosser, B. L. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1
Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838
Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838
Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stems cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7
Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stem cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7
Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974
Ayariga, J. A., Huang, H., & Dean, D. (2022). Decellularized avian cartilage, a promising alternative for human cartilage tissue regeneration. Materials, 15 (5). https://doi.org/10.3390/ma15051974
Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011
Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011
Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013
Babaei, B., Velasquez-Mao, A. J., Thomopoulos, S., Elson, E. L., Abramowitch, S. D., & Genin, G. M. (2017). Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 69, 193–202. https://doi.org/10.1016/j.jmbbm.2016.12.013
Bade, N. D., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. Soft Matter, 14(33), 6867–6874. https://doi.org/10.1039/c8sm00612a
Bade, N. D., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. Soft Matter, 14(33), 6867–6874. https://doi.org/10.1039/c8sm00612a
Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Gaussian Curvature Directs stress fiber orientation and cell migration. Biophysical Journal, 114(6), 1467–1476. https://doi.org/10.1016/j.bpj.2018.01.039
Bade, N. D., Xu, T., Kamien, R. D., Assoian, R. K., & Stebe, K. J. (2018). Gaussian Curvature Directs stress fiber orientation and cell migration. Biophysical Journal, 114(6), 1467–1476. https://doi.org/10.1016/j.bpj.2018.01.039
Báez-Cruz, F. A., & Ostap, E. M. (2023). Drosophila class-I myosins that can impact left-right asymmetry have distinct ATPase kinetics. Journal of Biological Chemistry, 299(8). https://doi.org/10.1016/j.jbc.2023.104961
Báez-Cruz, F. A., & Ostap, E. M. (2023). Drosophila class-I myosins that can impact left-right asymmetry have distinct ATPase kinetics. Journal of Biological Chemistry, 299(8). https://doi.org/10.1016/j.jbc.2023.104961
Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739
Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739
Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116
Ban, E., Wang, H., Matthew Franklin, J., Liphardt, J. T., Janmey, P. A., & Shenoy, V. B. (2019). Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6790–6799. https://doi.org/10.1073/pnas.1815659116
Basu, D., & Haswell, E. S. (2020). The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Current Biology, 30, 1-13. https://doi.org/10.1016/j.cub.2020.05.015
Basu, D., & Haswell, E. S. (2020). The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Current Biology, 30, 1-13. https://doi.org/10.1016/j.cub.2020.05.015
Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI
Basu, D., Codjoe, J. M., Veley, K. M., & Haswell, E. S. (2022). The Mechanosensitive ion channel msl10 modulates susceptibility to Pseudomonas syringae in Arabidopsis thaliana. Molecular Plant-Microbe Interations. https://doi.org/10.1094/MPMI-08-21-0207-FI
Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192
Basu, D., Shoots, J. M., & Haswell, E. S. (2020). Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany, 71(14), 4020–4032. https://doi.org/10.1093/jxb/eraa192
Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6
Benias, P. C., Wells, R. G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D. L., & Theise, N. D. (2018). Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-23062-6
Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117
Bensel, B. M., Woody, M. S., Pyrpassopoulos, S., Goldman, Y. E., Gilbert, S. P., & Ostap, E. M. (2020). The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15632–15641. https://doi.org/10.1073/pnas.1916343117
Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J., Boerckel, J. D., & Chow, B. Y. (2021). Single-component optogenetic tools for inducible Rho-A GTPase signaling. Advanced Biology, 5(9). https://doi.org/10.1002/ADBI.202100810
Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J., Boerckel, J. D., & Chow, B. Y. (2021). Single-component optogenetic tools for inducible Rho-A GTPase signaling. Advanced Biology, 5(9). https://doi.org/10.1002/ADBI.202100810
Bilkey, N., Li, H., Borodinov, N., Ievlev, A. v., Ovchinnikova, O. S., Dixit, R., & Foston, M. (2022). Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. Quantitative Plant Biology, 3, e31. https://doi.org/10.1017/QPB.2022.20
Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4
Bonnevie, E. D., Gullbrand, S. E., Ashinsky, B. G., Tsinman, T. K., Elliott, D. M., Chao, P. Hsiu G., Smith, H. E., & Mauck, R. L. (2019). Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss. Nature Biomedical Engineering, 3(12), 998–1008. https://doi.org/10.1038/s41551-019-0458-4
Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z
Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 5(1), 1–9. https://doi.org/10.1038/s41524-019-0186-z
Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853
Borodinov, N., Bilkey, N., Foston, M., Ievlev, A. V., Belianinov, A., Jesse, S., Vasudevan, R. K., Kalinin, S. V., & Ovchinnikova, O. S. (2019). Spectral map reconstruction using pan-sharpening algorithm: enhancing chemical imaging with AFM-IR. Microscopy and Microanalysis, 25(S2), 1024–1025. https://doi.org/10.1017/s1431927619005853
Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431
Bose, S., Noerr, P. S., Gopinathan, A., Gopinath, A., & Dasbiswas, K. (2022). Collective states of active particles with elastic dipolar interactions. ArXiv. https://doi.org/10.48550/arxiv.2202.10431
Boyle, J. J., Pless, R. B., Thomopoulos, S., & Genin, G. M. (2020). Direct estimation of surface strain fields from a stereo vision system. Journal of Biomechanical Engineering, 142(7). https://doi.org/10.1115/1.4045813
Boyle, J. J., Pless, R. B., Thomopoulos, S., & Genin, G. M. (2020). Direct estimation of surface strain fields from a stereo vision system. Journal of Biomechanical Engineering, 142(7). https://doi.org/10.1115/1.4045813
Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576
Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576
Boyle, M. J., Goldman, Y. E., & Composto, R. J. (2023). Enhancing Nanoparticle Detection in Interferometric Scattering (iSCAT) Microscopy Using a Mask R-CNN. The Journal of Physical Chemistry B. https://doi.org/ 10.1021/acs.jpcb.3c00097
Boyle, M. J., Goldman, Y. E., & Composto, R. J. (2023). Enhancing Nanoparticle Detection in Interferometric Scattering (iSCAT) Microscopy Using a Mask R-CNN. The Journal of Physical Chemistry B. https://doi.org/ 10.1021/acs.jpcb.3c00097
Boyle, M. J., Radhakrishnan, R., & Composto, R. J. (2024). Molecular Dynamics Study of the Effect of Grafting Density on Ion Diffusivity in a MARTINI Coarse-Grained Strong Polyelectrolyte Brush. Macromolecules. https://doi.org/10.1021/acs.macromol.4c01018
Boyle, M. J., Radhakrishnan, R., & Composto, R. J. (2024). Molecular Dynamics Study of the Effect of Grafting Density on Ion Diffusivity in a MARTINI Coarse-Grained Strong Polyelectrolyte Brush. Macromolecules. https://doi.org/10.1021/acs.macromol.4c01018
Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322
Brankovic, S. A., Hawthorne, E. A., Yu, X., Zhang, Y., & Assoian, R. K. (2019). MMP12 deletion preferentially attenuates axial stiffening of aging arteries. Journal of Biomechanical Engineering, 141(8) 081004. https://doi.org/10.1115/1.4043322
Burkart, G. M., & Dixit, R. (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. Molecular Biology of the Cell, 30(13), 1587–1597. https://doi.org/10.1091/mbc.E18-12-0776
Burkart, G. M., & Dixit, R. (2019). Microtubule bundling by MAP65-1 protects against severing by inhibiting the binding of katanin. Molecular Biology of the Cell, 30(13), 1587–1597. https://doi.org/10.1091/mbc.E18-12-0776
Calcutt, R., Vincent, R., Dean, D., Arinzeh, T.L., & Dixit, R. (2020). Artificial scaffolds that mimic the plant extracellular environment for the culture and attachment of plant cells. (IN REVIEW) https://doi.org/10.1101/2020.06.05.136614
Calcutt, R., Vincent, R., Dean, D., Arinzeh, T.L., & Dixit, R. (2020). Artificial scaffolds that mimic the plant extracellular environment for the culture and attachment of plant cells. (IN REVIEW) https://doi.org/10.1101/2020.06.05.136614
Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469
Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469
** NOTE: see press release for this publication HERE.
Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114
Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114
Caporizzo, M. A., Chen, C. Y., Bedi, K., Margulies, K. B., & Prosser, B. L. (2020). Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation, 141(11), 902–915. https://doi.org/10.1161/CIRCULATIONAHA.119.043930
Caporizzo, M. A., Chen, C. Y., Bedi, K., Margulies, K. B., & Prosser, B. L. (2020). Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation, 141(11), 902–915. https://doi.org/10.1161/CIRCULATIONAHA.119.043930
Caporizzo, M. A., Chen, C. Y., Salomon, A. K., Margulies, K. B., & Prosser, B. L. (2018). Microtubules provide a viscoelastic resistance to myocyte motion. Biophysical Journal, 115(9), 1796–1807. https://doi.org/10.1016/j.bpj.2018.09.019
Caporizzo, M. A., Chen, C. Y., Salomon, A. K., Margulies, K. B., & Prosser, B. L. (2018). Microtubules provide a viscoelastic resistance to myocyte motion. Biophysical Journal, 115(9), 1796–1807. https://doi.org/10.1016/j.bpj.2018.09.019
Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038
Caporizzo, M. A., Fishman, C. E., Sato, O., Jamiolkowski, R. M., Ikebe, M., & Goldman, Y. E. (2018). The antiparallel dimerization of myosin x imparts bundle selectivity for processive motility. Biophysical Journal, 114(6), 1400–1410. https://doi.org/10.1016/j.bpj.2018.01.038
Caprio, N. D., Davidson, M. D., Daly, A. C., & Burdick, J. A. (2024). Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue. Advanced Materials, 2312226. https://doi.org/10.1002/adma.202312226
Caprio, N. D., Davidson, M. D., Daly, A. C., & Burdick, J. A. (2024). Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue. Advanced Materials, 2312226. https://doi.org/10.1002/adma.202312226
Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984
Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984
Carlsson, A. E. (2018). Membrane bending by actin polymerization. Current Opinion in Cell Biology, 50, 1–7. https://doi.org/10.1016/j.ceb.2017.11.007
Carlsson, A. E. (2018). Membrane bending by actin polymerization. Current Opinion in Cell Biology, 50, 1–7. https://doi.org/10.1016/j.ceb.2017.11.007
Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877
Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877
Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0
Cenaj, O., Allison, D. H. R., Imam, R., Zeck, B., Drohan, L. M., Chiriboga, L., Llewellyn, J., Liu, C. Z., Park, Y. N., Wells, R. G., & Theise, N. D. (2021). Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Communications Biology, 4(1), 436. https://doi.org/10.1038/s42003-021-01962-0
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Alyafei, N. H. K., Indana, D., Slyman, R., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2023). Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. Nature Materials, 1-12. https://doi.org/10.1038/s41563-023-01716-9
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Alyafei, N. H. K., Indana, D., Slyman, R., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2023). Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. Nature Materials, 1-12. https://doi.org/10.1038/s41563-023-01716-9
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930
Chang, J., Saraswathibhatla, A., Song, Z., Varma, S., Sanchez, C., Srivastava, S., Liu, K., Bassik, M. C., Marinkovich, M. P., Hodgson, L., Shenoy, V., West, R. B., & Chaudhuri, O. (2022). Collective invasion of the basement membrane in breast cancer driven by forces from cell volume expansion and local contractility. bioRxiv, 2022.2007.2028.501930-502022.501907.501928.501930. https://doi.org/10.1101/2022.07.28.501930
Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750
Charrier, E. E., Pogoda, K., Li, R., Park, C. Y., Fredberg, J. J., & Janmey, P. A. (2020). A novel method to make viscoelastic polyacrylamide gels for cell culture and traction force microscopy. APL Bioengineering, 4(3), 36104. https://doi.org/10.1063/5.0002750
Charrier, E. E., Pogoda, K., Li, R., Wells, R. G., & Janmey, P. A. (2020). Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 1–10. https://doi.org/10.1007/s10237-020-01374-9
Charrier, E. E., Pogoda, K., Li, R., Wells, R. G., & Janmey, P. A. (2020). Elasticity-dependent response of malignant cells to viscous dissipation. Biomechanics and Modeling in Mechanobiology, 1–10. https://doi.org/10.1007/s10237-020-01374-9
Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9
Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-02906-9
Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behavior. Nature, 584, 535. https://doi.org/10.1038/s41586-020-2612-2
Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behavior. Nature, 584, 535. https://doi.org/10.1038/s41586-020-2612-2
Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2
Chen, C. Y., Caporizzo, M. A., Bedi, K., Vite, A., Bogush, A. I., Robison, P., Heffler, J. G., Salomon, A. K., Kelly, N. A., Babu, A., Morley, M. P., Margulies, K. B., & Prosser, B. L. (2018). Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nature Medicine, 24(8), 1225–1233. https://doi.org/10.1038/s41591-018-0046-2
Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947
Chen, C. Y., Salomon, A. K., Caporizzo, M. A., Curry, S., Kelly, N. A., Bedi, K. C., Bogush, A. I., Krämer, E., Schlossarek, S., Janiak, P., Moutin, M.-J., Carrier, L., Margulies, K. B., & Prosser, B. L. (2020). Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circulation Research, https://doi.org/10.1161/CIRCRESAHA.119.315947
Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0
Chen, D., Smith, L. R., Khandekar, G., Patel, P., Yu, C. K., Zhang, K., Chen, C. S., Han, L., & Wells, R. G. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-76107-0
Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154
Chen, K. Y., Jamiolkowski, R. M., Tate, A. M., Fiorenza, S. A., Pfeil, S. H., & Goldman, Y. E. (2020). Fabrication of zero mode waveguides for high concentration single molecule microscopy. Journal of Visualized Experiments, 2020(159). https://doi.org/10.3791/61154
Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017
Chen, T., Rohacek, A. M., Caporizzo, M., Nankali, A., Smits, J. J., Oostrik, J., Lanting, C. P., Kücük, E., Gilissen, C., van de Kamp, J. M., Pennings, R. J. E., Rakowiecki, S. M., Kaestner, K. H., Ohlemiller, K. K., Oghalai, J. S., Kremer, H., Prosser, B. L., & Epstein, D. J. (2021). Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 56(10), 1526-1540.e7. https://doi.org/10.1016/J.DEVCEL.2021.04.017
Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119
Chen, X., Chen, D., Ban, E., Toussaint, K. C., Janmey, P. A., Wells, R. G., & Shenoy, V. B. (2022). Glycosaminoglycans modulate long-range mechanical communication between cells in collagen networks. Proceedings of the National Academy of Sciences, 119(15). https://doi.org/10.1073/PNAS.2116718119
Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5
Chen, X., He, W., Liu, S., Li, M., Genin, G. M., Xu, F., & Lu, T. J. (2019). Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 338–342. https://doi.org/10.1007/s10409-019-00850-5
Chen, X., Li, M., Liu, S., He, W., Ti, F., Dong, Y., Genin, G. M., Xu, F., & Lu, T. J. (2020). Mechanics tuning of liquid inclusions via bio-coating. Extreme Mechanics Letters, 41. https://doi.org/10.1016/j.eml.2020.101049
Chen, X., Li, M., Liu, S., He, W., Ti, F., Dong, Y., Genin, G. M., Xu, F., & Lu, T. J. (2020). Mechanics tuning of liquid inclusions via bio-coating. Extreme Mechanics Letters, 41. https://doi.org/10.1016/j.eml.2020.101049
Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575
Chen, X., Li, M., Liu, S., Liu, F., Genin, G. M., Xu, F., & Lu, T. J. (2019). Translation of a coated rigid spherical inclusion in an elastic matrix: Exact solution, and implications for mechanobiology. Journal of Applied Mechanics, Transactions ASME, 86(5). https://doi.org/10.1115/1.4042575
Chen, X., Li, M., Yang, M., Liu, S., Genin, G. M., Xu, F., & Lu, T. J. (2018). The elastic fields of a compressible liquid inclusion. Extreme Mechanics Letters, 22, 122–130. https://doi.org/10.1016/j.eml.2018.06.002
Chen, X., Li, M., Yang, M., Liu, S., Genin, G. M., Xu, F., & Lu, T. J. (2018). The elastic fields of a compressible liquid inclusion. Extreme Mechanics Letters, 22, 122–130. https://doi.org/10.1016/j.eml.2018.06.002
Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909
Cheng, B., Wan, W., Huang, G., Li, Y., Genin, G. M., Mofrad, M. R. K., Lu, T. J., Xu, F., & Lin, M. (2020). Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Science Advances, 6(10), eaax1909. https://doi.org/10.1126/sciadv.aax1909
Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020
Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., Ivanovska, I. L., Irianto, J., Tewari, M., Zhu, K., Tichy, E. D., Mourkioti, F., Tang, H. Y., Greenberg, R. A., Prosser, B. L., & Discher, D. E. (2019). Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental Cell, 49(6), 920-935.e5. https://doi.org/10.1016/j.devcel.2019.04.020
Chopra, P., Quint, D., Gopinathan, A., & Liu, B. (2022). Geometric effects induce anomalous size-dependent active transport in structured environments. Physical Review Fluids, 7(7). https://doi.org/10.1103/PHYSREVFLUIDS.7.L071101
Chopra, P., Quint, D., Gopinathan, A., & Liu, B. (2022). Geometric effects induce anomalous size-dependent active transport in structured environments. Physical Review Fluids, 7(7). https://doi.org/10.1103/PHYSREVFLUIDS.7.L071101
Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E
Clark, A. T., Bennett, A., Kraus, E., Pogoda, K., Cebers, A., Janmey, P. A., Turner, K. T., Corbin, E. A., & Cheng, X. (2021). Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications. Multifunctional Materials. https://doi.org/10.1088/2399-7532/AC1B7E
Clark, A. T., Marchfield, D., Cao, Z., Dang, T., Tang, N., Gilbert, D., Corbin, E. A., Buchanan, K. S., & Cheng, X. M. (2022). The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers. APL Materials, 10(4), 041106. https://doi.org/10.1063/5.0086761
Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501
Codjoe, J. M., Richardson, R. A., McLoughlin, F., Vierstra, R. D., & Haswell, E. S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER– plasma membrane contact sites in Arabidopsis thaliana. eLife, 11. https://doi.org/10.7554/ELIFE.80501
Collins, J. M., Lang, A., Parisi, C., Moharrer, Y., Nijsure, M. P., Kim, J. H., Szeto, G. L., Qin, L., Gottardi, R. L., Dyment, N. A., Nowlan, N. C., & Boerckel, J. D. (2023). YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. bioRxiv, 2023.2001.2020.524918-522023.524901.524920.524918. https://doi.org/10.1101/2023.01.20.524918
Collins, J. M., Lang, A., Parisi, C., Moharrer, Y., Nijsure, M. P., Kim, J. H., Szeto, G. L., Qin, L., Gottardi, R. L., Dyment, N. A., Nowlan, N. C., & Boerckel, J. D. (2023). YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. bioRxiv, 2023.2001.2020.524918-522023.524901.524920.524918. https://doi.org/10.1101/2023.01.20.524918
Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446
Corbin, E. A., Vite, A., Peyster, E. G., Bhoopalam, M., Brandimarto, J., Wang, X., Bennett, A. I., Clark, A. T., Cheng, X., Turner, K. T., Musunuru, K., & Margulies, K. B. (2019). Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Applied Materials and Interfaces, 11(23), 20603–20614. https://doi.org/10.1021/acsami.9b02446
Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662
Cosgrove, B. D., Loebel, C., Driscoll, T. P., Tsinman, T. K., Dai, E. N., Heo, S.-J., Dyment, N. A., Burdick, J. A., & Mauck, R. L. (2021). Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials, 270, 120662. https://doi.org/10.1016/j.biomaterials.2021.120662
Cottone, A. M., Jeong, A., Nguyen, Y., McGonigle, J., Rosario, M., & Wells, R. (2024). Examining design features of a Research Experience for Teachers in mechanobiology towards promoting K-12 STEM integration. Proceedings of the 18th International Conference of the Learning Sciences. , 1670-1673.
Cottone, A. M., Jeong, A., Nguyen, Y., McGonigle, J., Rosario, M., & Wells, R. (2024). Examining design features of a Research Experience for Teachers in mechanobiology towards promoting K-12 STEM integration. Proceedings of the 18th International Conference of the Learning Sciences. , 1670-1673. https://repository.isls.org/bitstream/1/10780/1/ICLS2024_1670-1673.pdf
Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146
Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146
Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2
Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2
Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024
Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024
Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256
Damodaran, K., Venkatachalapathy, S., Alisafaei, F., Radhakrishnan, A. V., Sharma Jokhun, D., Shenoy, V. B., & Shivashankar, G. V. (2018). Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 29(25), 3039–3051. https://doi.org/10.1091/mbc.E18-04-0256
Damodaran, S., & Strader, L. C. (2019). Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, 851. https://doi.org/10.3389/fpls.2019.00851
Damodaran, S., & Strader, L. C. (2019). Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, 851. https://doi.org/10.3389/fpls.2019.00851
Dang, I., Brazzo, J. A., Bae, Y., & Assoian, R. K. (2023). Key role for Rac in the early transcriptional response to ECM stiffness and the stiffness-dependent repression of ATF3. Journal of Cell Science. https://doi.org/10.1242/jcs.260636
Dang, I., Brazzo, J. A., Bae, Y., & Assoian, R. K. (2023). Key role for Rac in the early transcriptional response to ECM stiffness and the stiffness-dependent repression of ATF3. Journal of Cell Science. https://doi.org/10.1242/jcs.260636
Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022
Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719
Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719
Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157
Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157
Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276
Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276
del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936
del Campo, L., Sánchez‐López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González‐Gómez, C., Cussó, L., Guzmán‐Martínez, G., Ruiz‐Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936. https://doi.org/10.1111/acel.12936
Dhand, A. P., Davidson, M. D., Zlotnick, H. M., Kolibaba, T. J., Killgore, J. P., & Burdick, J. A. (2024). Additive manufacturing of highly entangled polymer networks. Science, 385(6708), 566-572. https://doi.org/10.1126/science.adn6925
Dhand, A. P., Davidson, M. D., Zlotnick, H. M., Kolibaba, T. J., Killgore, J. P., & Burdick, J. A. (2024). Additive manufacturing of highly entangled polymer networks. Science, 385(6708), 566-572. https://doi.org/10.1126/science.adn6925
Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through Interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007
Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007
Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007
Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007
Discher, D. E. (2018). Biomembrane mechanical properties direct diverse cell functions. In Physics of Biological Membranes (pp. 263–285). Springer International Publishing. https://doi.org/10.1007/978-3-030-00630-3_11
Discher, D. E. (2018). Biomembrane mechanical properties direct diverse cell functions. In Physics of Biological Membranes (pp. 263–285). Springer International Publishing. https://doi.org/10.1007/978-3-030-00630-3_11
Dooling, L. J., Andrechak, J. C., Hayes, B. H., Kadu, S., Zhang, W., Pan, R., Vashisth, M., Irianto, J., Alvey, C. M., Ma, L. & Discher, D. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nature Biomedical Engineering, 1-16. https://doi.org/10.1038/s41551-023-01031-3
Dooling, L. J., Andrechak, J. C., Hayes, B. H., Kadu, S., Zhang, W., Pan, R., Vashisth, M., Irianto, J., Alvey, C. M., Ma, L. & Discher, D. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nature Biomedical Engineering, 1-16. https://doi.org/10.1038/s41551-023-01031-3
Dooling, L. J., Saini, K., Anlaş, A. A., & Discher, D. E. (2022). Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology. https://doi.org/10.1016/J.MATBIO.2022.06.006
Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918
Du, Y., Khandekar, G., Llewellyn, J., Polacheck, W., Chen, C. S., & Wells, R. G. (2019). A bile duct‐on‐a‐chip with organ‐level functions. Hepatology, 71(4), 1350–1363. https://doi.org/10.1002/hep.30918
Du, Y., Polacheck, W. J., & Wells, R. G. (2022). Bile Duct-on-a-Chip. Methods in Molecular Biology, 2373, 57–68. https://doi.org/10.1007/978-1-0716-1693-2_4
Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792
Eftekhari, B. S., Eskandari, M., Janmey, P. A., Samadikuchaksaraei, A., & Gholipourmalekabadi, M. (2020). Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Advanced Functional Materials, 1907792. https://doi.org/10.1002/adfm.201907792
Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106
Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106
Fan, Y., Burkart, G. M., & Dixit, R. (2018). The Arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends. Current Biology, 28(6), 987-994.e3. https://doi.org/10.1016/j.cub.2018.02.014
Fan, Y., Burkart, G. M., & Dixit, R. (2018). The Arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends. Current Biology, 28(6), 987-994.e3. https://doi.org/10.1016/j.cub.2018.02.014
Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344
Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344
Flynn, A. J., Miller, K., Codjoe, J. M., King, M. R., & Haswell, E. S. (2023). Mechanosensitive ion channels MSL8, MSL9, and MSL10 have environmentally sensitive intrinsically disordered regions with distinct biophysical characteristics in vitro. Plant Direct, 7(8), e515. https://doi.org/10.1002/pld3.515
Flynn, A. J., Miller, K., Codjoe, J. M., King, M. R., & Haswell, E. S. (2023). Mechanosensitive ion channels MSL8, MSL9, and MSL10 have environmentally sensitive intrinsically disordered regions with distinct biophysical characteristics in vitro. Plant Direct, 7(8), e515. https://doi.org/10.1002/pld3.515
Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116
Frank, D. B., Penkala, I. J., Zepp, J. A., Sivakumar, A., Linares-Saldana, R., Zacharias, W. J., Stolz, K. G., Pankin, J., Lu, M. Q., Wang, Q., Babu, A., Li, L., Zhou, S., Morley, M. P., Jain, R., & Morrisey, E. E. (2019). Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4362–4371. https://doi.org/10.1073/pnas.1813952116
Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y
Freedman, B. R., Rodriguez, A. B., Leiphart, R. J., Newton, J. B., Ban, E., Sarver, J. J., Mauck, R. L., Shenoy, V. B., & Soslowsky, L. J. (2018). Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-29060-y
Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228
Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228
Galarraga, J. H., Dhand, A. P., Bruce P. Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218
Galarraga, J. H., Dhand, A. P., Bruce P. Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218
Ganguly, A., DeMott, L., & Dixit, R. (2017). The Arabidopsis kinesin-4, FRA1, requires a high level of processive motility to function correctly. Journal of Cell Science, 130(7), 1232–1238. https://doi.org/10.1242/jcs.196857
Ganguly, A., DeMott, L., & Dixit, R. (2017). The Arabidopsis kinesin-4, FRA1, requires a high level of processive motility to function correctly. Journal of Cell Science, 130(7), 1232–1238. https://doi.org/10.1242/jcs.196857
Ganguly, A., DeMott, L., Zhu, C., McClosky, D. D., Anderson, C. T., & Dixit, R. (2018). Importin-β directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell, 44(5), 642-651.e5. https://doi.org/10.1016/j.devcel.2018.01.027
Ganguly, A., DeMott, L., Zhu, C., McClosky, D. D., Anderson, C. T., & Dixit, R. (2018). Importin-β directly regulates the motor activity and turnover of a kinesin-4. Developmental Cell, 44(5), 642-651.e5. https://doi.org/10.1016/j.devcel.2018.01.027
Gardini, L., Woody, M. S., Kashchuk, A. v., Goldman, Y. E., Ostap, E. M., & Capitanio, M. (2022). High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 513–557. https://doi.org/10.1007/978-1-0716-2229-2_19
Gavrilchenko, T., & Katifori, E. (2020). Distribution networks achieve uniform perfusion through geometric self-organization. (IN REVIEW) http://arxiv.org/abs/2009.04375
Gavrilchenko, T., & Katifori, E. (2020). Distribution networks achieve uniform perfusion through geometric self-organization. (IN REVIEW) http://arxiv.org/abs/2009.04375
Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K
Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K
Golnaraghi, F., Quint, D. A., & Gopinathan, A. (2023). Optimal foraging strategies for mutually avoiding competitors. Journal of Theoretical Biology, 111537. https://doi.org/10.1016/j.jtbi.2023.111537
Golnaraghi, F., Quint, D. A., & Gopinathan, A. (2023). Optimal foraging strategies for mutually avoiding competitors. Journal of Theoretical Biology, 111537. https://doi.org/10.1016/j.jtbi.2023.111537
Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591
Gong, Z., Dries, K. v. d., Cambi, A., & Shenoy, V. B. (2021). Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes. bioRxiv, 2021.2011.2023.469591-462021.469511.469523.469591. https://doi.org/10.1101/2021.11.23.469591
Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115
Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115
Gong, Z., van den Dries, K., Migueles-Ramírez, R. A., Wiseman, P. W., Cambi, A., & Shenoy, V. B. (2023). Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nature Communications, 14(1), 2902. https://doi.org/10.1038/s41467-023-38598-z
Gong, Z., van den Dries, K., Migueles-Ramírez, R. A., Wiseman, P. W., Cambi, A., & Shenoy, V. B. (2023). Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes. Nature Communications, 14(1), 2902. https://doi.org/10.1038/s41467-023-38598-z
Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663
Gong, Z., Wisdom, K. M., McEvoy, E., Chang, J., Adebowale, K., Chaudhuri, O., & Shenoy, V. B. (2020). Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3692663
Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318
Guo, J., Simmons, D. W., Ramahdita, G., Munsell, M. K., Oguntuyo, K., Kandalaft, B., Rios, B., Pear, M., Schuftan, D., Jiang, H., Lake, S. P., Genin, G. M., & Huebsch, N. (2020). Elastomer-Grafted iPSC-Derived Micro Heart Muscles to Investigate Effects of Mechanical Loading on Physiology. ACS Biomaterials Science and Engineering. https://doi.org/10.1021/acsbiomaterials.0c00318
Gupta, K., Llewellyn, J., Roberts, E., Liu, C., Naji, A., Assoian, R. K., & Wells, R. G. (2024). The biliary atresia susceptibility gene, EFEMP1, regulates extrahepatic bile duct elastic fiber formation and mechanics. JHEP Reports, 101215. https://doi.org/https://doi.org/10.1016/j.jhepr.2024.101215
Gupta, K., Llewellyn, J., Roberts, E., Liu, C., Naji, A., Assoian, R. K., & Wells, R. G. (2024). The biliary atresia susceptibility gene, EFEMP1, regulates extrahepatic bile duct elastic fiber formation and mechanics. JHEP Reports, 101215. https://doi.org/https://doi.org/10.1016/j.jhepr.2024.101215
Gupta, R., Gupta, P., Wang, S., Melnykov, A., Jiang, Q., Seth, A., Wang, Z., Morrissey, J. J., George, I., Gandra, S., Sinha, P., Storch, G. A., Parikh, B. A., Genin, G. M., & Singamaneni, S. (2023). Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nature Biomedical Engineering 2023, 1–15. https://doi.org/10.1038/s41551-022-01001-1
Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113
Hall, M. S., Alisafaei, F., Ban, E., Feng, X., Hui, C. Y., Shenoy, V. B., & Wu, M. (2016). Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proceedings of the National Academy of Sciences of the United States of America, 113(49), 14043–14048. https://doi.org/10.1073/pnas.1613058113
Hallström, G. F., Jones, D. L., Locke, R. C., Bonnevie, E. D., Kim, S. Y., Laforest, L., Garcia, D. C., & Mauck, R. L. (2023). Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Molecular Biology of the Cell, mbc. E22-12-0543. https://doi.org/10.1091/mbc.E22-12-0543
Hallström, G. F., Jones, D. L., Locke, R. C., Bonnevie, E. D., Kim, S. Y., Laforest, L., Garcia, D. C., & Mauck, R. L. (2023). Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Molecular Biology of the Cell, mbc. E22-12-0543. https://doi.org/10.1091/mbc.E22-12-0543
Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459
Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., & Zayed, M. (2021). Quantification of the flexural rigidity of peripheral arterial endovascular catheters and sheaths. Journal of the Mechanical Behavior of Biomedical Materials, 104459. https://doi.org/10.1016/j.jmbbm.2021.104459
Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800
Hayes, B. H., Tsai, R. K., Dooling, L. J., Kadu, S., Lee, J. Y., Pantano, D., Rodriguez, P. L., Subramanian, S., Shin, J. W., & Discher, D. E. (2020). Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. Journal of Cell Science, 133(5). https://doi.org/10.1242/jcs.237800
Hayes, B. H., Zhu, P. K., Wang, M., Pfeifer, C. R., Xia, Y., Phan, S., Andrechak, J. C., Du, J., Tobin, M. P., Anlas, A., Dooling, L. J., Vashisth, M., Irianto, J., Lampson, M. A., & Discher, D. E. (2023). Confinement plus Myosin-II suppression maximizes heritable loss of chromosomes, as revealed by live-cell ChReporters. Journal of Cell Science, jcs. 260753. https://doi.org/10.1242/jcs.260753
Hayes, B. H., Zhu, P. K., Wang, M., Pfeifer, C. R., Xia, Y., Phan, S., Andrechak, J. C., Du, J., Tobin, M. P., Anlas, A., Dooling, L. J., Vashisth, M., Irianto, J., Lampson, M. A., & Discher, D. E. (2023). Confinement plus Myosin-II suppression maximizes heritable loss of chromosomes, as revealed by live-cell ChReporters. Journal of Cell Science, jcs. 260753. https://doi.org/10.1242/jcs.260753
Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582
Heffler, J., Shah, P. P., Robison, P., Phyo, S., Veliz, K., Uchida, K., Bogush, A., Rhoades, J., Jain, R., & Prosser, B. L. (2020). A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circulation Research, 126(3), e10–e26. https://doi.org/10.1161/CIRCRESAHA.119.315582
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., McBeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., & Lakadamyali, M. (2022). Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering 2022, 1–15. https://doi.org/10.1038/s41551-022-00910-5
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596
Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).
Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A., Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083
Heo, S., Song, K., Thakur, S., Miller, L.M, Cao, X., Peredo, A., Seiber, B.N., Qu, F., Driscoll, T.P., Shenoy, V.B. and Lakadamyali, M., Burdick, J.A., Mauck, R.L. (2020) Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science advances, 6(25), p.eaax5083. https://doi.org/10.1126/sciadv.aax5083
Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076
Highley, C. B., Song, K. H., Daly, A. C., & Burdick, J. A. (2019). Jammed microgel inks for 3D printing applications. Advanced Science, 6(1), 1801076. https://doi.org/10.1002/advs.201801076
Homayouni, A. L., & Strader, L. C. (2020). Sugar rush: Glucosylation of IPyA attenuates auxin levels. Proceedings of the National Academy of Sciences, 117(14), 202003305. https://doi.org/10.1073/pnas.2003305117
Homayouni, A. L., & Strader, L. C. (2020). Sugar rush: Glucosylation of IPyA attenuates auxin levels. Proceedings of the National Academy of Sciences, 117(14), 202003305. https://doi.org/10.1073/pnas.2003305117
Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583
Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583
** NOTE: see press release for this publication HERE.
Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941
Hsu, J. C., Du, Y., Sengupta, A., Dong, Y. C., Mossburg, K. J., Bouché, M., Maidment, A. D. A., Weljie, A. M., & Cormode, D. P. (2021). Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.1C18941
Huang, H., & Dean, D. (2020). 3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Additive Manufacturing, 31, 100927. https://doi.org/10.1016/j.addma.2019.100927
Huang, H., & Dean, D. (2020). 3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Additive Manufacturing, 31, 100927. https://doi.org/10.1016/j.addma.2019.100927
Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120
Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120
Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725
Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725
Hwang, P. Y., Mathur, J., Cao, Y., Almeida, J., Ye, J., Morikis, V., Cornish, D., Clarke, M., Stewart, S. A., Pathak, A., & Longmore, G. D. (2023). A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Developmental Cell, 58(1), 34-50.e9. https://doi.org/10.1016/J.DEVCEL.2022.12.005
Indana, D., Zakharov, A., Lim, Y., Dunn, A. R., Bhutani, N., Shenoy, V. B., & Chaudhuri, O. (2024). Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell, 31(5), 640-656.e648. https://doi.org/10.1016/j.stem.2024.03.016
Indana, D., Zakharov, A., Lim, Y., Dunn, A. R., Bhutani, N., Shenoy, V. B., & Chaudhuri, O. (2024). Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell, 31(5), 640-656.e648. https://doi.org/10.1016/j.stem.2024.03.016
Ismail, U., Rowe, R. A., Cashin, J., Genin, G. M., & Zayed, M. A. (2022). Multimodal thrombectomy device for treatment of acute deep venous thrombosis. Scientific Reports, 12(1), 5295. https://doi.org/10.1038/s41598-022-09001-6
Ismail, U., Rowe, R. A., Cashin, J., Genin, G. M., & Zayed, M. A. (2022). Multimodal thrombectomy device for treatment of acute deep venous thrombosis. Scientific Reports, 12(1), 5295. https://doi.org/10.1038/s41598-022-09001-6
Isomursu, A., Park, K.-Y., Hou, J., Cheng, B., Mathieu, M., Shamsan, G. A., Fuller, B., Kasim, J., Mahmoodi, M. M., Lu, T. J., Genin, G. M., Xu, F., Lin, M., Distefano, M. D., Ivaska, J., & Odde, D. J. (2022). Directed cell migration towards softer environments. Nature Materials 2022, 1–10. https://doi.org/10.1038/s41563-022-01294-2
Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091
Jalil, A. A. R., Hayes, B. H., Andrechak, J. C., Xia, Y., Chenoweth, D. M., & Discher, D. E. (2020). Multivalent, soluble nano-self peptides increase phagocytosis of antibody-opsonized targets while suppressing “self” signaling. ACS Nano, 14(11), 15083–15093. https://doi.org/10.1021/acsnano.0c05091
Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964
Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., & Goldman, Y. E. (2019). Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLOS ONE, 14(10), e0222964. https://doi.org/10.1371/journal.pone.0222964
Ji, H. H., & Ostap, E. M. (2020). The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. Journal of Biological Chemistry, 295(12), 3749–3756. https://doi.org/10.1074/jbc.RA119.011227
Ji, H. H., & Ostap, E. M. (2020). The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. Journal of Biological Chemistry, 295(12), 3749–3756. https://doi.org/10.1074/jbc.RA119.011227
Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031
Ji, S., & Guvendiren, M. (2019). 3D printed wavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines, 11(1), 31. https://doi.org/10.3390/mi11010031
Ji, S., Abaci, A., Morrison, T., Gramlich, W. M., & Guvendiren, M. (2020). Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers. Bioprinting, 18, e00083. https://doi.org/10.1016/j.bprint.2020.e00083
Ji, S., Abaci, A., Morrison, T., Gramlich, W. M., & Guvendiren, M. (2020). Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers. Bioprinting, 18, e00083. https://doi.org/10.1016/j.bprint.2020.e00083
Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038
Ji, S., Almeida, E., & Guvendiren, M. (2019). 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 95, 214–224. https://doi.org/10.1016/j.actbio.2019.02.038
Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1
Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1
Jiang, Y., Pryse, K. M., Melnykov, A., Genin, G. M., & Elson, E. L. (2017). Investigation of Nanoscopic phase separations in lipid membranes using inverse fcs. Biophysical Journal, 112(11), 2367–2376. https://doi.org/10.1016/j.bpj.2017.04.013
Jiang, Y., Pryse, K. M., Melnykov, A., Genin, G. M., & Elson, E. L. (2017). Investigation of Nanoscopic phase separations in lipid membranes using inverse fcs. Biophysical Journal, 112(11), 2367–2376. https://doi.org/10.1016/j.bpj.2017.04.013
Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871
Jiang, Y., Pryse, K. M., Singamaneni, S., Genin, G. M., & Elson, E. L. (2019). Atomic force microscopy of phase separation on ruptured, giant unilamellar vesicles, and a mechanical pathway for the co-existence of lipid gel phases. Journal of Biomechanical Engineering, 141(7). https://doi.org/10.1115/1.4043871
Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2019). Fluorescence correlation spectroscopy and photon counting histograms in small domains. Part I: General theory. BioRxiv, 847129. https://doi.org/10.1101/847129
Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2019). Fluorescence correlation spectroscopy and photon counting histograms in small domains. Part I: General theory. BioRxiv, 847129. https://doi.org/10.1101/847129
Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2020). Fluorescence correlation spectroscopy and photon counting histograms in finite, bounded domains. Biophysical Journal, 119(2), 265–273. https://doi.org/10.1016/j.bpj.2020.05.032
Jiang, Y., Xu, B., Melnykov, A., Genin, G. M., & Elson, E. L. (2020). Fluorescence correlation spectroscopy and photon counting histograms in finite, bounded domains. Biophysical Journal, 119(2), 265–273. https://doi.org/10.1016/j.bpj.2020.05.032
Jing, H., & Strader, L. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486. https://doi.org/10.3390/ijms20030486
Jing, H., & Strader, L. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486. https://doi.org/10.3390/ijms20030486
Jing, H., Korasick, D. A., Emenecker, R. J., Morffy, N., Wilkinson, E. G., Powers, S. K., & Strader, L. C. (2022). Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications, 13(4015). https://doi.org/10.1038/s41467-022-31628-2
Jones, D. L., Hallström, G. F., Jiang, X., Locke, R. C., Evans, M. K., Bonnevie, E. D., Srikumar, A., Leahy, T. P., Nijsure, M. P., & Boerckel, J. D. (2023). Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proceedings of the National Academy of Sciences, 120(22), e2211947120. https://doi.org/10.1073/pnas.2211947120
Jones, D. L., Hallström, G. F., Jiang, X., Locke, R. C., Evans, M. K., Bonnevie, E. D., Srikumar, A., Leahy, T. P., Nijsure, M. P., Boerckel, J. D., Mauck, R.L., Dyment, N.A. (2023). Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proceedings of the National Academy of Sciences, 120(22), e2211947120. https://doi.org/10.1073/pnas.2211947120
Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R
Joshi, H., & Morley, S. C. (2019). Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. Journal of Leukocyte Biology, 106(1), 119–125. https://doi.org/10.1002/JLB.3MIR1118-417R
Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., & Shenoy, V. B. (2024). Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nature Communications, 15(1), 4338. https://doi.org/10.1038/s41467-024-48698-z
Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., & Shenoy, V. B. (2024). Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nature Communications, 15(1), 4338. https://doi.org/10.1038/s41467-024-48698-z
Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118
Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118
Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane M., Brafford P., Herlyn M., Speicher D.W, Wargo J., Tetzlaff M., Haydu L., Raj A., Shenoy V.B., Cukierman E., and Weeraratna A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193
Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, I. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane, M., Brafford, P., Herlyn, M., Speicher, D.W, Wargo, J., Tetzlaff, M., Haydu, L., Raj, A., Shenoy, V.B., Cukierman, E., and Weeraratna, A.T. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193
Khader, A., & Arinzeh, T. L. (2020). Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnology and Bioengineering, 117(1), 194–209. https://doi.org/10.1002/bit.27173
Khader, A., & Arinzeh, T. L. (2020). Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnology and Bioengineering, 117(1), 194–209. https://doi.org/10.1002/bit.27173
Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036
Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036
Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/doi.org/10.1021/acsbiomaterials.3c00147
Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00147
Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725
Kieckhaefer, J. E., Maina, F., Wells, R. G., & Wangensteen, K. J. (2019). Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9. Seminars in Liver Disease, 39(2), 261–274. https://doi.org/10.1055/s-0039-1678725
Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182
Kim, E., Jeon, J., Zhu, Y., Hoppe, E. D., Jun, Y. S., Genin, G. M., & Zhang, F. (2021). A biosynthetic hybrid spidroin-amyloid-mussel foot protein for underwater adhesion on diverse surfaces. ACS Applied Materials and Interfaces, 13(41), 48457–48468. https://doi.org/10.1021/ACSAMI.1C14182
Kolel-Veetil, M. K., Kant, A., Shenoy, V. B., & Buehler, M. J. (2022). SARS-CoV-2 Infection-Of Music and Mechanics of Its Spikes! A Perspective. ACS Nano. https://doi.org/10.1021/ACSNANO.1C11491
Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476
Krishnan, N., Sarpangala, N., Gamez, M., Gopinathan, A., & Ross, J. L. (2023). Effects of Cytoskeletal Network Mesh Size on Cargo Transport. arXiv preprint arXiv:2308.01859. https://doi.org/10.48550/arXiv.2308.01859
Krishnan, N., Sarpangala, N., Gamez, M., Gopinathan, A., & Ross, J. L. (2023). Effects of Cytoskeletal Network Mesh Size on Cargo Transport. arXiv preprint arXiv:2308.01859. https://doi.org/10.48550/arXiv.2308.01859
Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270
Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270
Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x
Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x
Labastide, J. A., Quint, D. A., Cullen, R. K., Maelfeyt, B., Ross, J. L., & Gopinathan, A. (2023). Non-specific cargo–filament interactions slow down motor-driven transport. The European Physical Journal E, 46(12), 134. https://doi.org/10.1140/epje/s10189-023-00394-4
Labastide, J. A., Quint, D. A., Cullen, R. K., Maelfeyt, B., Ross, J. L., & Gopinathan, A. (2023). Non-specific cargo–filament interactions slow down motor-driven transport. The European Physical Journal E, 46(12), 134. https://doi.org/10.1140/epje/s10189-023-00394-4
Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8
Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8
Lang, A., Benn, A., Wolter, A., Balcaen, T., Collins, J., Kerckhofs, G., Zwijsen, A., & Boerckel, J. D. (2023). Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth. bioRxiv. https://doi.org/10.1101/2023.01.07.522994
Lang, A., Benn, A., Wolter, A., Balcaen, T., Collins, J., Kerckhofs, G., Zwijsen, A., & Boerckel, J. D. (2023). Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis during long bone growth. bioRxiv. https://doi.org/10.1101/2023.01.07.522994
Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642
Lebreton, G., Géminard, C., Lapraz, F., Pyrpassopoulos, S., Cerezo, D., Spéder, P., Ostap, E. M., & Noselli, S. (2018). Molecular to organismal chirality is induced by the conserved myosin 1D. Science, 362(6417), 949–952. https://doi.org/10.1126/science.aat8642
Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120
Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120
Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058
Lee, H.-P., Alisafaei, F., Adebawale, K., Chang, J., Shenoy, V. B., & Chaudhuri, O. (2021). The nuclear piston activates mechanosensitive ion channels to generate cell migration paths in confining microenvironments. Sci. Adv (Vol. 7, number 2) https://doi.org/10.1126/sciadv.abd4058
Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124
Lee, J. S., Wilson, M. E., Richardson, R. A., & Haswell, E. S. (2019). Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. Plant Direct, 3(3), e00124. https://doi.org/10.1002/pld3.124
Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841
Leiphart, R. J., Chen, D., Peredo, A. P., Loneker, A. E., & Janmey, P. A. (2019). Mechanosensing at cellular interfaces. Langmuir, 35(23), 7509–7519. https://doi.org/10.1021/acs.langmuir.8b02841
Li, D., Janmey, P. A., & Wells, R. G. (2023). Local fat content determines global and local stiffness in livers with simple steatosis. FASEB BioAdvances, 5(6), 251-261. https://doi.org/https://doi.org/10.1096/fba.2022-00134
Li, D., Janmey, P. A., & Wells, R. G. (2023). Local fat content determines global and local stiffness in livers with simple steatosis. FASEB BioAdvances, 5(6), 251-261. https://doi.org/10.1096/fba.2022-00134
Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567
Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567
Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104
Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104
Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789
Lin, M., Liu, S. B., Genin, G. M., Zhu, Y., Shi, M., Ji, C., Li, A., Lu, T. J., & Xu, F. (2017). Melting away pain: decay of thermal nociceptor transduction during heat-induced irreversible desensitization of ion channels. ACS Biomaterials Science and Engineering, 3(11), 3029–3035. https://doi.org/10.1021/acsbiomaterials.6b00789
Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8
Linares-Saldana, R., Kim, W., Bolar, N. A., Zhang, H., Koch-Bojalad, B. A., Yoon, S., Shah, P. P., Karnay, A., Park, D. S., Luppino, J. M., Nguyen, S. C., Padmanabhan, A., Smith, C. L., Poleshko, A., Wang, Q., Li, L., Srivastava, D., Vahedi, G., Eom, G. H., Blobel, G. A., Joyce, E. F., and Jain, R. (2021). BRD4 orchestrates genome folding to promote neural crest differentiation. Nature Genetics, 53(10), 1480–1492. https://doi.org/10.1038/s41588-021-00934-8
Linderman, S. W., Golman, M., Gardner, T. R., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. (2018). Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 70, 165–176. https://doi.org/10.1016/j.actbio.2018.01.032
Linderman, S. W., Golman, M., Gardner, T. R., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. (2018). Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 70, 165–176. https://doi.org/10.1016/j.actbio.2018.01.032
Lipner, J., Boyle, J. J., Xia, Y., Birman, V., Genin, G. M., & Thomopoulos, S. (2017). Toughening of fibrous scaffolds by mobile mineral deposits. Acta Biomaterialia, 58, 492–501. https://doi.org/10.1016/j.actbio.2017.05.033
Lipner, J., Boyle, J. J., Xia, Y., Birman, V., Genin, G. M., & Thomopoulos, S. (2017). Toughening of fibrous scaffolds by mobile mineral deposits. Acta Biomaterialia, 58, 492–501. https://doi.org/10.1016/j.actbio.2017.05.033
Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114
Lippert, L. G., Dadosh, T., Hadden, J. A., Karnawat, V., Diroll, B. T., Murray, C. B., Holzbaur, E. L. F., Schulten, K., Reck-Peterson, S. L., & Goldman, Y. E. (2017). Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4564–E4573. https://doi.org/10.1073/pnas.1620149114
Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027
Liu, J., Das, D., Yang, F., Schwartz, A. G., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 80, 217–227. https://doi.org/10.1016/j.actbio.2018.09.027
Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163
Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163
Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742
Liu, S. lin, Bajpai, A., Hawthorne, E. A., Bae, Y., Castagnino, P., Monslow, J., Puré, E., Spiller, K. L., & Assoian, R. K. (2019). Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight, 4(1). https://doi.org/10.1172/jci.insight.122742
Liu, S., Jiao, J., Lu, T. J., Xu, F., Pickard, B. G., & Genin, G. M. (2017). Arabidopsis leaf trichomes as acoustic antennae. Biophysical Journal, 113(9), 2068–2076. https://doi.org/10.1016/j.bpj.2017.07.035
Liu, S., Jiao, J., Lu, T. J., Xu, F., Pickard, B. G., & Genin, G. M. (2017). Arabidopsis leaf trichomes as acoustic antennae. Biophysical Journal, 113(9), 2068–2076. https://doi.org/10.1016/j.bpj.2017.07.035
Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705
Liu, S., Yang, H., Lu, T. J., Genin, G. M., & Xu, F. (2019). Electrostatic switching of nuclear basket conformations provides a potential mechanism for nuclear mechanotransduction. Journal of the Mechanics and Physics of Solids, 133, 103705. https://doi.org/10.1016/j.jmps.2019.103705
Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705
Liu, Y., Schwartz, A. G., Hong, Y., Peng, X., Xu, F., Thomopoulos, S., & Genin, G. M. (2020). Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 109705. https://doi.org/10.1016/j.jbiomech.2020.109705
Llewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of etiology. JHEP Reports, 100760. https://doi.org/10.1016/j.jhepr.2023.100760
Llewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of etiology. JHEP Reports, 100760. https://doi.org/10.1016/j.jhepr.2023.100760
Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160
Locke, R. C., Miller, L., Lemmon, E. A., Assi, S. S., Jones, D. L., Bonnevie, E. D., Burdick, J. A., Heo, S. J., & Mauck, R. L. (2022). Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening. bioRxiv, 2022.2012.2005.519160-512022.519112.519105.519160. https://doi.org/10.1101/2022.12.05.519160
Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802
Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802
Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6
Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6
Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9
Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9
Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992
Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992
Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524
Loneker, A. E., Alisafaei, F., Kant, A., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2022). Lipid droplets are intracellular mechanical stressors that promote hepatocyte dedifferentiation. bioRxiv, 2022.2008.2027.505524-502022.505508.505527.505524. https://doi.org/10.1101/2022.08.27.505524
Loneker, A. E., Alisafaei, F., Kant, A., Li, D., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2023). Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of the National Academy of Sciences, 120(16), e2216811120. https://doi.org/10.1073/pnas.2216811120
Loneker, A. E., Alisafaei, F., Kant, A., Li, D., Janmey, P. A., Shenoy, V. B., & Wells, R. G. (2023). Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of the National Academy of Sciences, 120(16), e2216811120. https://doi.org/10.1073/pnas.2216811120
Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777
Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434
Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434
Maksaev, G., Shoots, J. M., Ohri, S., & Haswell, E. S. (2018). Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant Direct, 2(6), e00059. https://doi.org/10.1002/pld3.59
Maksaev, G., Shoots, J. M., Ohri, S., & Haswell, E. S. (2018). Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant Direct, 2(6), e00059. https://doi.org/10.1002/pld3.59
Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001
Malik, R., Luong, T., Cao, X., Han, B., Shah, N., Franco-Barraza, J., Han, L., Shenoy, V. B., Lelkes, P. I., & Cukierman, E. (2019). Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biology, 81, 50–69. https://doi.org/10.1016/j.matbio.2018.11.001
Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c
Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c
Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592
Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., Radvanyi, F., Goud, B., Janmey, P. A., & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano Letters, 19(11), 7691–7702. https://doi.org/10.1021/acs.nanolett.9b02592
Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286
Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286
Martinez-Sarmiento, J. A., Cosma, M. P., & Lakadamyali, M. (2024). Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Reports, 43(5). https://doi.org/10.1016/j.celrep.2024.114170
Martinez-Sarmiento, J. A., Cosma, M. P., & Lakadamyali, M. (2024). Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Reports, 43(5). https://doi.org/10.1016/j.celrep.2024.114170
Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065
Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., & Boerckel, J. D. (2019). YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 218(4), 1369–1389. https://doi.org/10.1083/jcb.201806065
Mason, D. E., Goeckel, M. E., Vega, S. L., Wu, P.-H., Johnson, D., Heo, S.-J., Wirtz, D., Burdick, J. A., Wood, L., Chow, B. Y., Stratman, A. N., & Boerckel, J. D. (2023). Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis. eLife(12:RP86668). https://doi.org/10.7554/eLife.86668.1
Mason, D. E., Goeckel, M. E., Vega, S. L., Wu, P.-H., Johnson, D., Heo, S.-J., Wirtz, D., Burdick, J. A., Wood, L., Chow, B. Y., Stratman, A. N., & Boerckel, J. D. (2023). Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis. eLife(12:RP86668). https://doi.org/10.7554/eLife.86668.1
Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480
Masucci, E. M., Relich, P. K., Lakadamyali, M., Ostap, E. M., & Holzbaur, E. L. F. (2021). Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E21-10-0480
Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. In bioRxiv (p. 2020.12.24.424334). bioRxiv. https://doi.org/10.1101/2020.12.24.424334
Masucci, E. M., Relich, P. K., Ostap, E. M., Holzbaur, E. L. F., & Lakadamyali, M. (2020). Cega: A single particle segmentation algorithm to identify moving particles in a noisy system. Molecular Biology of the Cell, 32 (9). https://doi.org/10.1091/mbc.E20-11-0744
Mathur, J., Shenoy, V., & Pathak, A. (2020). Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity. BioRxiv, 2020.03.20.000802. https://doi.org/10.1101/2020.03.20.000802
Mathur, J., Shenoy, V., & Pathak, A. (2020). Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity. BioRxiv, 2020.03.20.000802. https://doi.org/10.1101/2020.03.20.000802
McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196
McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196
McDermott, A. M., Eastburn, E. A., Kelly, D. J., & Boerckel, J. D. (2021). Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. Journal of Biomechanics, 125, 110580. https://doi.org/10.1016/J.JBIOMECH.2021.110580
McDermott, A. M., Eastburn, E. A., Kelly, D. J., & Boerckel, J. D. (2021). Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. Journal of Biomechanics, 125, 110580. https://doi.org/10.1016/J.JBIOMECH.2021.110580
McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756
McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756
McEvoy, E., Han, Y. L., Guo, M., & Shenoy, V. B. (2020). Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19904-5
McEvoy, E., Han, Y. L., Guo, M., & Shenoy, V. B. (2020). Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19904-5
McEvoy, E., Sneh, T., Moeendarbary, E., Javanmardi, Y., Efimova, N., Yang, C., Marino-Bravante, G. E., Chen, X., Escribano, J., Spill, F., Garcia-Aznar, J. M., Weeraratna, A. T., Svitkina, T. M., Kamm, R. D., & Shenoy, V. B. (2022). Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nature Communications 2022 13:1, 13(1), 1–14. https://doi.org/10.1038/s41467-022-34701-y
McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007
McIntosh, B. B., Pyrpassopoulos, S., Holzbaur, E. L. F., & Ostap, E. M. (2018). Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Current Biology, 28(2), 236-248.e5. https://doi.org/10.1016/j.cub.2017.12.007
Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003
Mellis, I. A., Edelstein, H. I., Truitt, R., Goyal, Y., Beck, L. E., Symmons, O., Dunagin, M. C., Linares Saldana, R. A., Shah, P. P., Pérez-Bermejo, J. A., Padmanabhan, A., Yang, W., Jain, R., & Raj, A. (2021). Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Systems. https://doi.org/10.1016/J.CELS.2021.07.003
Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118
Memarian, F. L., Lopes, J. D., Schwarzendahl, F. J., Athani, M. G., Sarpangala, N., Gopinathan, A., Beller, D. A., Dasbiswas, K., & Hirst, L. S. (2021). Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proceedings of the National Academy of Sciences, 118(52). https://www.pnas.org/doi/10.1073/pnas.2117107118
Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024
Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024
Menezes, R., Sherman, L., Rameshwar, P., & Arinzeh, T. L. (2023). Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.37496
Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115
Mentes, A., Huehn, A., Liu, X., Zwolak, A., Dominguez, R., Shuman, H., Ostap, E. M., & Sindelar, C. V. (2018). High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1292–1297. https://doi.org/10.1073/pnas.1718316115
Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017
Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017
Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791
Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905
Michniewicz, M., Ho, C.-H., Enders, T. A., Floro, E., Gunther, L. K., Damodoran, S., Powers, S. K., Frick, E. M., Topp, C. N., Frommer, W. B., & Strader, L. (2019). Transporter of IBA1 links auxin and cytokinin to influence root architecture. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3339905
Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977
Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2021). In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator. BioRxiv, 2021.10.19.464977. https://doi.org/10.1101/2021.10.19.464977
Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A., & Haswell, E. S. (2022). In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Current Biology. https://doi.org/10.1016/J.CUB.2022.05.033
Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298
Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., & Kleist, T. J. (2021). Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Science Advances, 7(37). https://doi.org/10.1126/SCIADV.ABG4298
Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/https://doi.org/10.1002/adhm.202401550
Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/10.1002/adhm.202401550
Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7).https://advances.sciencemag.org/content/7/11/eabe9446
Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7). https://advances.sciencemag.org/content/7/11/eabe9446
Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004
Monslow, J., Todd, L., Chojnowski, J. E., Govindaraju, P. K., Assoian, R. K., & Puré, E. (2020). Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. The American Journal of Pathology, 0(0). https://doi.org/10.1016/j.ajpath.2020.01.004
Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd
Motahari, F., & Carlsson, A. E. (2019). Pulling-force generation by ensembles of polymerizing actin filaments. Physical Biology, 17(1), 016005. https://doi.org/10.1088/1478-3975/ab59bd
Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409
Motahari, F., & Carlsson, A. E. (2019). Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential. Physical Review E, 100(4), 042409. https://doi.org/10.1103/PhysRevE.100.042409
Mugnai, M. L., & Thirumalai, D. (2017). Kinematics of the lever arm swing in myosin VI. Proceedings of the National Academy of Sciences of the United States of America, 114(22), E4389–E4398. https://doi.org/10.1073/pnas.1615708114
Mugnai, M. L., & Thirumalai, D. (2017). Kinematics of the lever arm swing in myosin VI. Proceedings of the National Academy of Sciences of the United States of America, 114(22), E4389–E4398. https://doi.org/10.1073/pnas.1615708114
Mugnai, M. L., Caporizzo, M. A., Goldman, Y. E., & Thirumalai, D. (2020). Processivity and velocity for motors stepping on periodic tracks. Biophysical Journal, 118(7), 1537–1551. https://doi.org/10.1016/j.bpj.2020.01.047
Mugnai, M. L., Caporizzo, M. A., Goldman, Y. E., & Thirumalai, D. (2020). Processivity and velocity for motors stepping on periodic tracks. Biophysical Journal, 118(7), 1537–1551. https://doi.org/10.1016/j.bpj.2020.01.047
Muir, V. G., & Burdick, J. A. (2021). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923
Muir, V. G., & Burdick, J. A. (2021). Chemically modified biopolymers for the formation of biomedical hydrogels. In Chemical Reviews. American Chemical Society. https://doi.org/10.1021/acs.chemrev.0c00923
Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009
Neguembor, M. V., Martin, L., Castells-García, Á., Gómez-García, P. A., Vicario, C., Carnevali, D., AlHaj Abed, J., Granados, A., Sebastian-Perez, R., Sottile, F., Solon, J., Wu, C., Lakadamyali, M., & Cosma, M. P. (2021). Transcription-mediated supercoiling regulates genome folding and loop formation. Molecular Cell, 81(15), 3065-3081.e12. https://doi.org/10.1016/J.MOLCEL.2021.06.009
Noerr, P. S., Golnaraghi, F., Gopinathan, A., & Dasbiswas, K. (2022). Optimal mechanical interactions direct multicellular network formation on elastic substrates. https://doi.org/10.48550/arxiv.2205.14088
Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120
Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120
Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753
Padmanabhan, A., Alexanian, M., Linares-Saldana, R., González-Terán, B., Andreoletti, G., Huang, Y., Connolly, A. J., Kim, W., Hsu, A., Duan, Q., Winchester, S. A. B., Felix, F., Perez-Bermejo, J. A., Wang, Q., Li, L., Shah, P. P., Haldar, S. M., Jain, R., & Srivastava, D. (2020). BRD4 (Bromodomain-containing protein 4) interacts with GATA4 (GATA Binding Protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation, 142(24), 2338–2355. https://doi.org/10.1161/CIRCULATIONAHA.120.047753
Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686
Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686
Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2
Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2
Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6
Pakshir, P., Alizadehgiashi, M., Wong, B., Coelho, N. M., Chen, X., Gong, Z., Shenoy, V. B., McCulloch, C., & Hinz, B. (2019). Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 10(1), 1–17. https://doi.org/10.1038/s41467-019-09709-6
Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E. (2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167
Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E.(2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167
Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1
Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., Chen, C. S., Gao, B., Minna, J. D., Bachoo, R., DeBerardinis, R. J., & Danuser, G. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1
Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4
Park, S. E., Ahn, J., Jeong, H. E., Youn, I., Huh, D., & Chung, S. (2021). A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Materials, 13(1), 1–11. https://doi.org/10.1038/s41427-020-00273-w
Park, S. E., Ahn, J., Jeong, H. E., Youn, I., Huh, D., & Chung, S. (2021). A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Materials, 13(1), 1–11. https://doi.org/10.1038/s41427-020-00273-w
Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8
Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315
Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315
Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska‐Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180
Patteson, A. E., Pogoda, K., Byfield, F. J., Mandal, K., Ostrowska-Podhorodecka, Z., Charrier, E. E., Galie, P. A., Deptuła, P., Bucki, R., McCulloch, C. A., & Janmey, P. A. (2019). Loss of vimentin enhances cell motility through small confining spaces. Small, 15(50), 1903180. https://doi.org/10.1002/smll.201903180
Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134
Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134
Peng, X., Huang, Y. and Genin, G.M. (2023). The fibrous character of pericellular matrix mediates cell mechanotransduction. Journal of the Mechanics and Physics of Solids, 180, p.105423. https://doi.org/10.1016/j.jmps.2023.105423
Peng, X., Huang, Y. and Genin, G.M. (2023). The fibrous character of pericellular matrix mediates cell mechanotransduction. Journal of the Mechanics and Physics of Solids, 180, p.105423. https://doi.org/10.1016/j.jmps.2023.105423
Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://www.tandfonline.com/doi/full/10.1080/19491034.2022.2045726
Pfeifer, C. R., Tobin, M. P., Cho, S., Vashisth, M., Dooling, L. J., Vazquez, L. L., Ricci-De Lucca, E. G., Simon, K. T., & Discher, D. E. (2022). Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate. Nucleus, 13(1), 129–143. https://doi.org/10.1080/19491034.2022.2045726
Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486
Phyo, S. A., Uchida, K., Chen, C. Y., Caporizzo, M. A., Bedi, K., Griffin, J., Margulies, K., & Prosser, B. L. (2022). Transcriptional, Post-Transcriptional, and Post-Translational Mechanisms Rewrite the Tubulin Code During Cardiac Hypertrophy and Failure. Frontiers in cell and developmental biology, 10. https://doi.org/10.3389/FCELL.2022.837486
Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8
Polacheck, W. J., Kutys, M. L., Tefft, J. B., & Chen, C. S. (2019). Microfabricated blood vessels for modeling the vascular transport barrier. Nature Protocols, 14(5), 1425–1454. https://doi.org/10.1038/s41596-019-0144-8
Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258–262.
Polacheck, W. J., Kutys, M. L., Yang, J., Eyckmans, J., Wu, Y., Vasavada, H., Hirschi, K. K., & Chen, C. S. (2017). A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552(7684), 258–262.
Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018
Poleshko, A., Shah, P. P., Gupta, M., Babu, A., Morley, M. P., Manderfield, L. J., Ifkovits, J. L., Calderon, D., Aghajanian, H., Sierra-Pagán, J. E., Sun, Z., Wang, Q., Li, L., Dubois, N. C., Morrisey, E. E., Lazar, M. A., Smith, C. L., Epstein, J. A., & Jain, R. (2017). Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell, 171(3), 573-587.e14. https://doi.org/10.1016/j.cell.2017.09.018
Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278
Poleshko, A., Smith, C. L., Nguyen, S. C., Sivaramakrishnan, P., Wong, K. G., Murray, J. I., Lakadamyali, M., Joyce, E. F., Jain, R., & Epstein, J. A. (2019). H3k9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. ELife, 8. https://doi.org/10.7554/eLife.49278
Poling-Skutvik, R., Mcevoy, E., Shenoy, V., & Osuji, C. O. (2020). Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 4(10), 102601. https://doi.org/10.1103/PhysRevMaterials.4.102601
Poling-Skutvik, R., Mcevoy, E., Shenoy, V., & Osuji, C. O. (2020). Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 4(10), 102601. https://doi.org/10.1103/PhysRevMaterials.4.102601
Poventud‐Fuentes, I., Kwon, K. W., Seo, J., Tomaiuolo, M., Stalker, T. J., Brass, L. F., & Huh, D. (2020). A Human Vascular Injury‐on‐a‐Chip Model of Hemostasis. Small, 2004889. https://doi.org/10.1002/smll.202004889
Poventud-Fuentes, I., Kwon, K. W., Seo, J., Tomaiuolo, M., Stalker, T. J., Brass, L. F., & Huh, D. (2020). A Human Vascular Injury-on-a-Chip Model of Hemostasis. Small, 2004889. https://doi.org/10.1002/smll.202004889
Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044
Powers, S. K., Holehouse, A. S., Korasick, D. A., Schreiber, K. H., Clark, N. M., Jing, H., Emenecker, R., Han, S., Tycksen, E., Hwang, I., Sozzani, R., Jez, J. M., Pappu, R. V., & Strader, L. C. (2019). Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Molecular Cell, 76(1), 177-190.e5. https://doi.org/10.1016/j.molcel.2019.06.044
Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679
Prendergast, M. E., & Burdick, J. A. (2022). Computational modeling and experimental characterization of extrusion printing into suspension baths. Advanced Healthcare Materials, 11(7), 2101679. https://doi.org/10.1002/ADHM.202101679
Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC
Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC
Prendergast, M. E., Heo, S.-J., Mauck, R. L., & Burdick, J. A. (2023). Suspension bath bioprinting and maturation of anisotropic meniscal constructs. Biofabrication. DOI 10.1088/1758-5090/acc3c3
Prendergast, M. E., Heo, S.-J., Mauck, R. L., & Burdick, J. A. (2023). Suspension bath bioprinting and maturation of anisotropic meniscal constructs. Biofabrication. DOI 10.1088/1758-5090/acc3c3
Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006
Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A., & Shenoy, V. B. (2021). Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophysical Journal, 120(22), 5074–5089. https://doi.org/10.1016/J.BPJ.2021.10.006
Pyrpassopoulos, S., Gicking, A. M., Zaniewski, T. M., Hancock, W. O., & Ostap, E. M. (2023). KIF1A is kinetically tuned to be a superengaging motor under hindering loads. Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2216903120-e2216903120. https://doi.org/10.1073/PNAS.2216903120/SUPPL_FILE/PNAS.2216903120.SAPP.PDF
Pyrpassopoulos, S., Gicking, A. M., Zaniewski, T. M., Hancock, W. O., & Ostap, E. M. (2023). KIF1A is kinetically tuned to be a superengaging motor under hindering loads. Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2216903120-e2216903120. https://doi.org/10.1073/PNAS.2216903120/SUPPL_FILE/PNAS.2216903120.SAPP.PDF
Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045
Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2019). Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophysical Journal, 118(1), 243–253. https://doi.org/10.1016/j.bpj.2019.10.045
Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2022). Microtubule Dumbbells to Assess the Effect of Force Geometry on Single Kinesin Motors. Methods in Molecular Biology (Clifton, N.J.), 2478, 559–583. https://doi.org/10.1007/978-1-0716-2229-2_20
Pyrpassopoulos, S., Shuman, H., & Ostap, E.M. (2017). Adhesion force and attachment lifetime of the kif16b-px domain interaction with lipid membranes. Molecular Biology of the Cell, 28(23), 3315–3322. https://doi.org/10.1091/mbc.E17-05-0324
Pyrpassopoulos, S., Shuman, H., & Ostap, E.M. (2017). Adhesion force and attachment lifetime of the kif16b-px domain interaction with lipid membranes. Molecular Biology of the Cell, 28(23), 3315–3322. https://doi.org/10.1091/mbc.E17-05-0324
Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013
Qazi, T. H., Blatchley, M. R., Davidson, M. D., Yavitt, F. M., Cooke, M. E., Anseth, K. S., & Burdick, J. A. (2022). Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell. https://doi.org/10.1016/J.STEM.2022.03.013
Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440
Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440
Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194
Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194
Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182
Qu, C., Roth, R., Puapatanakul, P., Loitman, C., Hammad, D., Genin, G. M., Miner, J. H., & Suleiman, H. Y. (2022). Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. Journal of the American Society of Nephrology, 33(1), 155–173. https://doi.org/10.1681/ASN.2021020182
Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4
Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4
Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).
Radin, I., Richardson, R. A., & Haswell, E. S. (2022). Moss PIEZO homologs have a conserved structure, are ubiquitously expressed, and do not affect general vacuole function. Plant Signaling and Behavior, 17(1).
Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310
Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., & Haswell, E. S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 373(6554), 586–590. https://doi.org/10.1126/SCIENCE.ABE6310
** NOTE: see press release for this publication HERE.
Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4
Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4
Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026
Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026
Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013
Roell, G. W., Carr, R. R., Campbell, T., Shang, Z., Henson, W. R., Czajka, J. J., Martín, H. G., Zhang, F., Foston, M., Dantas, G., Moon, T. S., & Tang, Y. J. (2019). A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metabolic Engineering, 55, 120–130. https://doi.org/10.1016/j.ymben.2019.06.013
Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802
Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802
Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684
Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684
Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4
Rowe, R. A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2019). Stable fitting of noisy stress relaxation data. Mechanics of Soft Materials, 1(1), 1–14. https://doi.org/10.1007/s42558-019-0010-4
Saadat, F., Lagieski, M. J., Birman, V., Thomopoulos, S., & Genin, G. M. (2018). Functional grading of pericellular matrix surrounding chondrocytes: potential roles in signaling and fluid transport. BioRxiv, 365569. https://doi.org/10.1101/365569
Saadat, F., Lagieski, M. J., Birman, V., Thomopoulos, S., & Genin, G. M. (2018). Functional grading of pericellular matrix surrounding chondrocytes: potential roles in signaling and fluid transport. BioRxiv, 365569. https://doi.org/10.1101/365569
Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839
Saini, K., & Discher, D. E. (2019). Forced unfolding of proteins directs biochemical cascades. Biochemistry, 58(49), 4893–4902. https://doi.org/10.1021/acs.biochem.9b00839
Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001
Saini, K., Cho, S., Dooling, L. J., & Discher, D. E. (2020). Tension in fibrils suppresses their enzymatic degradation – A molecular mechanism for ‘use it or lose it.’ Matrix Biology, 85–86, 34–46. https://doi.org/10.1016/j.matbio.2019.06.001
Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989
Sarpangala, N., & Gopinathan, A. (2021). Cargo-mediated mechanisms reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. BioRxiv, 2021.06.10.447989. https://doi.org/10.1101/2021.06.10.447989
Sarpangala, N., & Gopinathan, A. (2022). Cargo surface fluidity can reduce inter-motor mechanical interference, promote load-sharing and enhance processivity in teams of molecular motors. PLOS Computational Biology, 18(6), e1010217. https://doi.org/10.1371/journal.pcbi.1010217
Sarpangala, N., Randell, B., Gopinathan, A., & Kogan, O. (2023). Tunable intracellular transport on converging microtubule morphologies. http://arxiv.org/abs/2301.01264
Sarpangala, N., Randell, B., Gopinathan, A., & Kogan, O. (2023). Tunable intracellular transport on converging microtubule morphologies. http://arxiv.org/abs/2301.01264
Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4
Scarborough, E. A., Uchida, K., Vogel, M., Erlitzki, N., Iyer, M., Phyo, S. A., Bogush, A., Kehat, I., & Prosser, B. L. (2021). Microtubules orchestrate local translation to enable cardiac growth. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21685-4
Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320
Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320
Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007
Schlegel, A. M., & Haswell, E. S. (2020). Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. In Methods in Cell Biology. Academic Press Inc. https://doi.org/10.1016/bs.mcb.2020.02.007
See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010
See, K., Kiseleva, A. A., Smith, C. L., Liu, F., Li, J., Poleshko, A., & Epstein, J. A. (2020). Histone methyltransferase activity programs nuclear peripheral genome positioning. Developmental Biology, 466(1–2), 90–98. https://doi.org/10.1016/j.ydbio.2020.07.010
See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078
See, K., Lan, Y., Rhoades, J., Jain, R., Smith, C. L., & Epstein, J. A. (2019). Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9Me2 domains. Development, 146(3). https://doi.org/10.1242/dev.174078
Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117
Seo, B. R., Chen, X., Ling, L., Shimpi, A. A., Song, Y. H., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R. C. A., Gourdon, D., Shenoy, V. B., Fischbach, C. (2020) Collagen microstructure mechanically controls myofibroblast differentiation. Proceedings Of The National Academy Of Sciences, 117(21), 11387-11398. https://doi.org/10.1073/pnas.1919394117
Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2
Seo, J., Byun, W. Y., Alisafaei, F., Georgescu, A., Yi, Y. S., Massaro-Giordano, M., Shenoy, V. B., Lee, V., Bunya, V. Y., & Huh, D. (2019). Multiscale reverse engineering of the human ocular surface. Nature Medicine, 25(8), 1310–1318. https://doi.org/10.1038/s41591-019-0531-2
Seth, A., Liu, Y., Gupta, R., Wang, Z., Mittal, E., Kolla, S., Rathi, P., Gupta, P., Parikh, B. A., & Genin, G. M. (2023). Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. Nano Letters. https://doi.org/10.1021/acs.nanolett.3c03789
Seth, A., Liu, Y., Gupta, R., Wang, Z., Mittal, E., Kolla, S., Rathi, P., Gupta, P., Parikh, B. A., & Genin, G. M. (2023). Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. Nano Letters. https://doi.org/10.1021/acs.nanolett.3c03789
Shah, P. P., Keough, K. C., Gjoni, K., Santini, G. T., Abdill, R. J., Wickramasinghe, N. M., Dundes, C. E., Karnay, A., Chen, A., Salomon, R. E. A., Walsh, P. J., Nguyen, S. C., Whalen, S., Joyce, E. F., Loh, K. M., Dubois, N., Pollard, K. S., & Jain, R. (2023). An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biology, 24(1), 1-35. https://doi.org/10.1186/S13059-023-02849-5
Shah, P. P., Keough, K. C., Gjoni, K., Santini, G. T., Abdill, R. J., Wickramasinghe, N. M., Dundes, C. E., Karnay, A., Chen, A., Salomon, R. E. A., Walsh, P. J., Nguyen, S. C., Whalen, S., Joyce, E. F., Loh, K. M., Dubois, N., Pollard, K. S., & Jain, R. (2023). An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biology, 24(1), 1-35. https://doi.org/10.1186/S13059-023-02849-5
Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17. https://doi.org/10.1016/j.stem.2020.12.016
Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., Rader, D.J., Yang, W., Prosser, B.L., Musunuru, K., Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 28, 1–17. https://doi.org/10.1016/j.stem.2020.12.016
** NOTE: new video for this publication HERE.
Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941
Shakiba, D., Alisafaei, F., Savadipour, A., Rowe, R. A., Liu, Z., Pryse, K. M., Shenoy, V. B., Elson, E. L., & Genin, G. M. (2020). The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast-collagen interactions. ACS Nano, https://doi.org/10.1021/acsnano.9b09941
Shiraishi, K., Shah, P. P., Morley, M. P., Loebel, C., Santini, G. T., Katzen, J., Basil, M. C., Lin, S. M., Planer, J. D., Cantu, E., Jones, D. L., Nottingham, A. N., Li, S., Cardenas-Diaz, F. L., Zhou, S., Burdick, J. A., Jain, R., & Morrisey, E. E. (2023). Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell. https://doi.org/https://doi.org/10.1016/j.cell.2023.02.010
Shiraishi, K., Shah, P. P., Morley, M. P., Loebel, C., Santini, G. T., Katzen, J., Basil, M. C., Lin, S. M., Planer, J. D., Cantu, E., Jones, D. L., Nottingham, A. N., Li, S., Cardenas-Diaz, F. L., Zhou, S., Burdick, J. A., Jain, R., & Morrisey, E. E. (2023). Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell. https://doi.org/10.1016/j.cell.2023.02.010
Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167
Shutova, M. S., Asokan, S. B., Talwar, S., Assoian, R. K., Bear, J. E., & Svitkina, T. M. (2017). Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. Journal of Cell Biology, 216(9), 2877–2889. https://doi.org/10.1083/jcb.201705167
Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677
Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677
Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279
Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279
Smith, C. L., Lan, Y., Jain, R., Epstein, J. A., & Poleshko, A. (2021). Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 7(39), 3035–3059. https://doi.org/10.1126/SCIADV.ABJ3035
Smith, C. L., Lan, Y., Jain, R., Epstein, J. A., & Poleshko, A. (2021). Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. Science Advances, 7(39), 3035–3059. https://doi.org/10.1126/SCIADV.ABJ3035
Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090
Smith, L. R., Irianto, J., Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Constricted migration modulates stem cell differentiation. Molecular Biology of the Cell, 30(16), 1985–1999. https://doi.org/10.1091/mbc.E19-02-0090
Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691
Snoberger, A., Barua, B., Atherton, J. L., Shuman, H., Forgacs, E., Goldman, Y. E., Winkelmann, D. A., & Ostap, E. M. (2021). Myosin with hypertrophic cardiac mutation r712l has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 10, 1–24. https://doi.org/10.7554/eLife.63691
Song, D., Oberai, A. A., & Janmey, P. A. (2022). Hyperelastic continuum models for isotropic athermal fibrous networks. Interface Focus, 12(6). https://doi.org/10.1098/RSFS.2022.0043
Song, D., Shivers, J. L., MacKintosh, F. C., Patteson, A. E., & Janmey, P. A. (2021). Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 129(14), 140901. https://doi.org/10.1063/5.0047829
Song, D., Shivers, J. L., MacKintosh, F. C., Patteson, A. E., & Janmey, P. A. (2021). Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 129(14), 140901. https://doi.org/10.1063/5.0047829
Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777
Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777
Song, J. W., Paek, J., Park, K. T., Seo, J., & Huh, D. (2018). A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. Biomicrofluidics, 12(4), 042211. https://doi.org/10.1063/1.5027385
Song, J. W., Paek, J., Park, K. T., Seo, J., & Huh, D. (2018). A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. Biomicrofluidics, 12(4), 042211. https://doi.org/10.1063/1.5027385
Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228
Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228
Song, K. H., Highley, C. B., Rouff, A., & Burdick, J. A. (2018). Complex 3D-printed microchannels within cell-degradable hydrogels. Advanced Functional Materials, 28(31), 1801331. https://doi.org/10.1002/adfm.201801331
Song, K. H., Highley, C. B., Rouff, A., & Burdick, J. A. (2018). Complex 3D-printed microchannels within cell-degradable hydrogels. Advanced Functional Materials, 28(31), 1801331. https://doi.org/10.1002/adfm.201801331
Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576
Spencer, T. M., Blumenstein, R. F., Pryse, K. M., Lee, S. L., Glaubke, D. A., Carlson, B. E., Elson, E. L., & Genin, G. M. (2017). Fibroblasts slow conduction velocity in a reconstituted tissue model of fibrotic cardiomyopathy. ACS Biomaterials Science and Engineering, 3(11), 3022–3028. https://doi.org/10.1021/acsbiomaterials.6b00576
Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760
Stanley, A., Heo, S., Mauck, R. L., Mourkioti, F., & Shore, E. M. (2019). Elevated BMP and Mechanical signaling through YAP1/RhoA poises FOP mesenchymal progenitors for osteogenesis. Journal of Bone and Mineral Research, 34(10), 1894–1909. https://doi.org/10.1002/jbmr.3760
Stratton, S., Wang, S., Hashemi, S., Pressman, Y., Nanchanatt, J., Oudega, M., & Arinzeh, T. L. (2023). A scaffold containing zinc oxide for Schwann cell-mediated axon growth. J Neural Eng, 20(6). https://doi.org/10.1088/1741-2552/ad0a00
Stratton, S., Wang, S., Hashemi, S., Pressman, Y., Nanchanatt, J., Oudega, M., & Arinzeh, T. L. (2023). A scaffold containing zinc oxide for Schwann cell-mediated axon growth. J Neural Eng, 20(6). https://doi.org/10.1088/1741-2552/ad0a00
Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019
Talwar, S., Kant, A., Xu, T., Shenoy, V. B., & Assoian, R. K. (2021). Mechanosensitive smooth muscle cell phenotypic plasticity emerging from a null state and the balance between Rac and Rho. Cell Reports, 35(3), 109019. https://doi.org/10.1016/j.celrep.2021.109019
Tang, Q., Sensale, S., Bond, C., Xing, J., Qiao, A., Hugelier, S., Arab, A., Arya, G., & Lakadamyali, M. (2023). Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Current Biology. https://doi.org/10.1016/j.cub.2023.10.068
Tang, Q., Sensale, S., Bond, C., Xing, J., Qiao, A., Hugelier, S., Arab, A., Arya, G., & Lakadamyali, M. (2023). Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Current Biology. https://doi.org/10.1016/j.cub.2023.10.068
Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037
Thakur, S., Relich, P. K., Sorokina, E. M., Gyparaki, M. T., & Lakadamyali, M. (2020). ORP1L regulates dynein clustering on endolysosmal membranes in response to 1 cholesterol levels 2. BioRxiv, 2020.08.28.273037. https://doi.org/10.1101/2020.08.28.273037
Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J. & Discher, D. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, mbc. E23-06-0207. https://doi.org/10.1091/mbc.E23-06-0207
Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J. & Discher, D. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, mbc. E23-06-0207. https://doi.org/10.1091/mbc.E23-06-0207
Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J., & Discher, D. E. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, 34(13), br19. https://doi.org/10.1091/mbc.E23-06-0207
Tobin, M. P., Pfeifer, C. R., Zhu, P. K., Hayes, B. H., Wang, M., Vashisth, M., Xia, Y., Phan, S. H., Belt, S. A., Irianto, J., & Discher, D. E. (2023). Differences in cell shape, motility, and growth reflect chromosomal number variations that can be visualized with live-cell ChReporters. Molecular Biology of the Cell, 34(13), br19. https://doi.org/10.1091/mbc.E23-06-0207
Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659
Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659
Tsinman, T., Jiang, X., Han, L., Koyama, E., Mauck, R., & Dyment, N. (2021). Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB Journal, 35(8). https://doi.org/10.1096/FJ.202100499R
Tsinman, T., Jiang, X., Han, L., Koyama, E., Mauck, R., & Dyment, N. (2021). Intrinsic and growth-mediated cell and matrix specialization during murine meniscus tissue assembly. FASEB Journal, 35(8). https://doi.org/10.1096/FJ.202100499R
Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005
Tutwiler, V., Wang, H., Litvinov, R. I., Weisel, J. W., & Shenoy, V. B. (2017). Interplay of platelet contractility and elasticity of fibrin/erythrocytes in blood clot retraction. Biophysical Journal, 112(4), 714–723. https://doi.org/10.1016/j.bpj.2017.01.005
Uehlin, A. F., Vines, J. B., Feldman, D. S., Dean, D. R., & Thomas, V. (2022). Inkjet Printing of Nanohydroxyapatite Gradients on Fibrous Scaffold for Bone–Ligament Enthesis. JOM, 74(9), 3336-3348. https://doi.org/10.1007/S11837-022-05397-8/
Uehlin, A. F., Vines, J. B., Feldman, D. S., Dean, D. R., & Thomas, V. (2022). Inkjet Printing of Nanohydroxyapatite Gradients on Fibrous Scaffold for Bone–Ligament Enthesis. JOM, 74(9), 3336-3348. https://doi.org/10.1007/S11837-022-05397-8/
Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1
Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1
van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5
van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5
Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118/-/DCSUPPLEMENTAL
Vashisth, M., Cho, S., Irianto, J., Xia, Y., Wang, M., Hayes, B., Wieland, D., Wells, R., Jafarpour, F., Liu, A., & Discher, D. E. (2021). Scaling concepts in ’omics: Nuclear lamin-B scales with tumor growth and often predicts poor prognosis, unlike fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(48). https://doi.org/10.1073/PNAS.2112940118
Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5
Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5
Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5
Vite, A., Caporizzo, M. A., Corbin, E. A., Brandimarto, J., McAfee, Q., Livingston, C. E., Prosser, B. L., & Margulies, K. B. (2022). Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic research in cardiology, 117(1). https://doi.org/10.1007/S00395-022-00952-5
von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184
von Kleeck, R., Brankovic, S. A., Roberts, I., Hawthorne, E. A., Bruun, K., Castagnino, P., & Assoian, R. K. (2019). Premature arterial stiffening in Hutchinson-Gilford Progeria Syndrome linked to early induction of Lysyl Oxidase (LOX) and corrected by LOX inhibition. BioRxiv, 773184. https://doi.org/10.1101/773184
von Kleeck, R., Castagnino, P., & Assoian, R. K. (2022). Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria syndrome. Vascular Biology, 4(1), 1–10. https://doi.org/10.1530/vb-21-0018
von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4
von Kleeck, R., Castagnino, P., Roberts, E., Talwar, S., Ferrari, G., & Assoian, R. K. (2021). Decreased vascular smooth muscle contractility in Hutchinson–Gilford Progeria Syndrome linked to defective smooth muscle myosin heavy chain expression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-90119-4
von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997
von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997
Walter, C., Balouchzadeh, R., Garcia, K. E., Kroenke, C. D., Pathak, A., & Bayly, P. V. (2023). Multi-scale measurement of stiffness in the developing ferret brain. Scientific Reports, 13(1), 20583. https://doi.org/10.1038/s41598-023-47900-4
Walter, C., Balouchzadeh, R., Garcia, K. E., Kroenke, C. D., Pathak, A., & Bayly, P. V. (2023). Multi-scale measurement of stiffness in the developing ferret brain. Scientific Reports, 13(1), 20583. https://doi.org/10.1038/s41598-023-47900-4
Walter, C., Mathur, J., & Pathak, A. (2023). Reciprocal intra- and extra-cellular polarity enables deep mechanosensing through layered matrices. Cell Reports, 42(4), 112362. https://doi.org/10.1016/j.celrep.2023.112362
Walter, C., Mathur, J., & Pathak, A. (2023). Reciprocal intra- and extra-cellular polarity enables deep mechanosensing through layered matrices. Cell Reports, 42(4), 112362. https://doi.org/10.1016/j.celrep.2023.112362
Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract
Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract
Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920
Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920
Wang, M., Phan, S., Hayes, B. H., & Discher, D. E. (2023). Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma, 1-16. https://doi.org/10.1007/s00412-023-00800-y
Wang, M., Phan, S., Hayes, B. H., & Discher, D. E. (2023). Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma, 1-16. https://doi.org/10.1007/s00412-023-00800-y
Wang, S., Hashemi, S., Stratton, S., & Arinzeh, T. L. (2020). The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 10(3), 2001244. https://doi.org/10.1002/adhm.202001244
Wang, S., Hashemi, S., Stratton, S., & Arinzeh, T. L. (2020). The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Advanced Healthcare Materials, 10(3), 2001244. https://doi.org/10.1002/adhm.202001244
Wang, X., & Carlsson, A. E. (2017). A master equation approach to actin polymerization applied to endocytosis in yeast. PLoS Computational Biology, 13(12), e1005901. https://doi.org/10.1371/journal.pcbi.1005901
Wang, X., & Carlsson, A. E. (2017). A master equation approach to actin polymerization applied to endocytosis in yeast. PLoS Computational Biology, 13(12), e1005901. https://doi.org/10.1371/journal.pcbi.1005901
Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525
Wang, Y., Coomey, J., Miller, K., Jensen, G. S., & Haswell, E. S. (2022). Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. Journal of Experimental Botany, 73(5), 1533–1545. https://doi.org/10.1093/JXB/ERAB525
Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258
Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258
Williams, D., Leuthardt, E. C., Genin, G. M., & Zayed, M. (2021). Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-90813-3
Williams, D., Leuthardt, E. C., Genin, G. M., & Zayed, M. (2021). Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-90813-3
Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2
Woody, M. S., Greenberg, M. J., Barua, B., Winkelmann, D. A., Goldman, Y. E., & Ostap, E. M. (2018). Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 9(1), 1–11. https://doi.org/10.1038/s41467-018-06193-2
Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266
Woody, M. S., Winkelmann, D. A., Capitanio, M., Ostap, E. M., & Goldman, Y. E. (2019). Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 8. https://doi.org/10.7554/eLife.49266
Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f
Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f
Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009
Xia, Y., Cho, S., Vashisth, M., Ivanovska, I. L., Dingal, P. C. D. P., & Discher, D. E. (2019). Manipulating the mechanics of extracellular matrix to study effects on the nucleus and its structure. Methods, 157, 3–14. https://doi.org/10.1016/j.ymeth.2018.12.009
Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161
Xia, Y., Ivanovska, I. L., Zhu, K., Smith, L., Irianto, J., Pfeifer, C. R., Alvey, C. M., Ji, J., Liu, D., Cho, S., Bennett, R. R., Liu, A. J., Greenberg, R. A., & Discher, D. E. (2018). Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. Journal of Cell Biology, 217(11), 3796–3808. https://doi.org/10.1083/jcb.201711161
Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9
Xia, Y., Pfeifer, C. R., & Discher, D. E. (2019). Nuclear mechanics during and after constricted migration. Acta Mechanica Sinica/Lixue Xuebao, 35(2), 299–308. https://doi.org/10.1007/s10409-018-00836-9
Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100
Xia, Y., Pfeifer, C. R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E. J., Dooling, L. J., Tobin, M. P., Wang, M., Ivanovska, I. L., Smith, L. R., Greenberg, R. A., & Discher, D. E. (2019). Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle. The Journal of Cell Biology, 218(8), 2545–2563. https://doi.org/10.1083/jcb.201811100
Xu, K. L., Di Caprio, N., Fallahi, H., Dehghany, M., Davidson, M. D., Laforest, L., Cheung, B. C., Zhang, Y., Wu, M., Shenoy, V., Han, L., Mauck, R. L., & Burdick, J. A. (2024). Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nature Communications, 15(1), 2766. https://doi.org/10.1038/s41467-024-46774-y
Xu, K. L., Di Caprio, N., Fallahi, H., Dehghany, M., Davidson, M. D., Laforest, L., Cheung, B. C., Zhang, Y., Wu, M., Shenoy, V., Han, L., Mauck, R. L., & Burdick, J. A. (2024). Microinterfaces in biopolymer-based bicontinuous hydrogels guide rapid 3D cell migration. Nature Communications, 15(1), 2766. https://doi.org/10.1038/s41467-024-46774-y
Yang, F., Das, D., Karunakaran, K., Genin, G. M., Thomopoulos, S., & Chasiotis, I. (2022). Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomaterialia. https://doi.org/10.1016/J.ACTBIO.2022.03.005
Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033
Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033
Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377
Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377
Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076
Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076
Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237
Yu, C. K., Xu, T., Assoian, R. K., & Rader, D. J. (2018). Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long noncoding RNA stiffness regulators. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 164–173. https://doi.org/10.1161/ATVBAHA.117.310237
Yu, J., Del Mundo, J. T., Freychet, G., Zhernenkov, M., Schaible, E., Gomez, E. W., Gomez, E. D., & Cosgrove, D. J. (2024). Dynamic Structural Change of Plant Epidermal Cell Walls under Strain. Small, 2311832. https://doi.org/10.1002/smll.202311832
Yu, J., Del Mundo, J. T., Freychet, G., Zhernenkov, M., Schaible, E., Gomez, E. W., Gomez, E. D., & Cosgrove, D. J. (2024). Dynamic Structural Change of Plant Epidermal Cell Walls under Strain. Small, 2311832. https://doi.org/10.1002/smll.202311832
Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688
Zhang, J., Alisafaei, F., Nikolić, M., Nou, X. A., Kim, H., Shenoy, V. B., & Scarcelli, G. (2020). Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small, 1907688. https://doi.org/10.1002/smll.201907688
Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8
Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8
Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5
Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5
Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469
Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469
Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639
Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639
Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013
Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013
Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues (Adv. Mater. 48/2020). Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356
Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues. Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356
Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD
Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35
Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35