Publications

Publications

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Alisafaei, F., Gong, Z., Johnson, V. E., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2020). Mechanisms of local stress amplification in axons near the gray-white matter interface. Biophysical Journal, 119(7), 1290–1300. https://doi.org/10.1016/j.bpj.2020.08.024

Almeida, J., Mathur, J., Lee, Y. L., Sarker, B., & Pathak, A. (2023). Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Molecular Biology of the Cell. https://doi.org/10.1091/MBC.E22-10-0469

Almeida, J., Mathur, J., Lee, Y. L., Sarker, B., & Pathak, A. (2023). Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Molecular Biology of the Cellhttps://doi.org/10.1091/MBC.E22-10-0469

Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., & Shenoy, V. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1

Amiad Pavlov, D., Corredera, C. S., Dehghany, M., Heffler, J., Shen, K. M., Zuela-Sopilniak, N., Randell, R., Uchida, K., Jain, R., Shenoy, V., Lammerding, J., & Prosser, B. L. (2024). Microtubule forces drive nuclear damage in LMNA cardiomyopathy. bioRxiv, 2024.2002. 2010.579774. https://doi.org/10.1101/2024.02.10.579774v1

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Avgoulas, E. I., Sutcliffe, M. P. F., Linderman, S. W., Birman, V., Thomopoulos, S., & Genin, G. M. (2019). Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of The Royal Society Interface, 16(153), 20180838. https://doi.org/10.1098/rsif.2018.0838

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stems cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Ayariga, J. A., Dean, M., Nyairo, E., Thomas, V., & Dean, D. (2021). PLA/HA Multiscale nano-/micro-hybrid 3d scaffolds provide inductive cues to stem cells to differentiate into an osteogenic lineage. Additive Manufacturing for Medical Applications, 73(12), 3787–3797. https://doi.org/10.1007/S11837-021-04912-7

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Babaei, B., Velasquez-Mao, A. J., Pryse, K. M., McConnaughey, W. B., Elson, E. L., & Genin, G. M. (2018). Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 84, 198–207. https://doi.org/10.1016/j.jmbbm.2018.05.011

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Ban, E., Franklin, J. M., Nam, S., Smith, L. R., Wang, H., Wells, R. G., Chaudhuri, O., Liphardt, J. T., & Shenoy, V. B. (2018). Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophysical Journal, 114(2), 450–461. https://doi.org/10.1016/j.bpj.2017.11.3739

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Boyle, J. J., Soepriatna, A., Damen, F., Rowe, R. A., Pless, R. B., Kovacs, A., Goergen, C. J., Thomopoulos, S., & Genin, G. M. (2019). Regularization-free strain mapping in three dimensions, with application to cardiac ultrasound. Journal of Biomechanical Engineering, 141(1). https://doi.org/10.1115/1.4041576

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

Calcutt, R., Vincent, R., Dean, D., Livingston Arinzeh, T., & Dixit, R. (2021). Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv, 7, 1–11. https://www.science.org/doi/10.1126/sciadv.abj1469

**  NOTE:  see press release for this publication HERE.

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cao, X., Ban, E., Baker, B. M., Lin, Y., Burdick, J. A., Chen, C. S., & Shenoy, V. B. (2017). Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4549–E4555. https://doi.org/10.1073/pnas.1620486114

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cardenas Turner, J., Collins, G., Blaber, E. A., Almeida, E. A. C., & Arinzeh, T. L. (2020). Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 173–185. https://doi.org/10.1002/term.2984

Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877 

Cashin, J. L., Wirtz, A. J., Genin, G. M., & Zayed, M. (2022). A Fenestrated Balloon Expandable Stent System for the Treatment of Aortoiliac Occlusive Disease. Journal of Engineering and Science in Medical Diagnostics and Therapy, 6(1). https://doi.org/10.1115/1.4055877 

Chen, B., He, B., Tucker, A. M., Biluck, I., Leung, T. H., Schaer, T. P., & Yang, S. (2024). An Environmentally Stable, Biocompatible, and Multilayered Wound Dressing Film with Reversible and Strong Adhesion. Advanced Healthcare Materials, n/a(n/a), 2400827. https://doi.org/https://doi.org/10.1002/adhm.202400827

Chen, B., He, B., Tucker, A. M., Biluck, I., Leung, T. H., Schaer, T. P., & Yang, S. (2024). An Environmentally Stable, Biocompatible, and Multilayered Wound Dressing Film with Reversible and Strong Adhesion. Advanced Healthcare Materials, n/a(n/a), 2400827. https://doi.org/10.1002/adhm.202400827

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Cheng, B., Lin, M., Huang, G., Li, Y., Ji, B., Genin, G. M., Deshpande, V. S., Lu, T. J., & Xu, F. (2017). Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Physics of Life Reviews, 22–23, 88–119. https://doi.org/10.1016/j.plrev.2017.06.016

Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146

Cruz-Acuña, R., Kariuki, S. W., Sugiura, K., Karaiskos, S., Plaster, E. M., Loebel, C., Efe, G., Karakasheva, T. A., Gabre, J. T., Hu, J., Burdick, J. A., & Rustgi, A. K. (2023). Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI168146

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-21029-2

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Damaraju, S. M., Shen, Y., Elele, E., Khusid, B., Eshghinejad, A., Li, J., Jaffe, M., & Arinzeh, T. L. (2017). Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 149, 51–62. https://doi.org/10.1016/j.biomaterials.2017.09.024

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Das, S. L., Sutherland, B. P., Lejeune, E., Eyckmans, J., & Chen, C. S. (2022). Mechanical response of cardiac microtissues to acute localized injury. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/AJPHEART.00305.2022

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Davidson, M. D., Ban, E., Schoonen, A. C. M., Lee, M., D’Este, M., Shenoy, V. B., & Burdick, J. A. (2020). Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Advanced Materials, 32(8), 1905719. https://doi.org/10.1002/adma.201905719

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Prendergast, M. E., Ban, E., Xu, K. L., Mickel, G., Mensah, P., Dhand, A., Janmey, P. A., Shenoy, V. B., & Burdick, J. A. (2021). Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 7(46). https://doi.org/10.1126/SCIADV.ABI8157

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

Davidson, M. D., Song, K. H., Lee, M. H., Llewellyn, J., Du, Y., Baker, B. M., Wells, R. G., & Burdick, J. A. (2019). Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomaterials Science and Engineering, 5(8), 3899–3908. https://doi.org/10.1021/acsbiomaterials.8b01276

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through Interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Dhand, A. P., Galarraga, J. H., & Burdick, J. A. (2020). Enhancing biopolymer hydrogel functionality through interpenetrating networks. In Trends in Biotechnology (Vol. 39, Issue 5, pp. 519–538). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2020.08.007

Du, Y., de Jong, I. E., Gupta, K., Waisbourd-Zinman, O., Har-Zahav, A., Soroka, C. J., Boyer, J. L., Llewellyn, J., Liu, C., Naji, A., Polacheck, W. J., & Wells, R. G. (2023). Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication. https://doi.org/10.1088/1758-5090/ad0261

Du, Y., de Jong, I. E., Gupta, K., Waisbourd-Zinman, O., Har-Zahav, A., Soroka, C. J., Boyer, J. L., Llewellyn, J., Liu, C., Naji, A., Polacheck, W. J., & Wells, R. G. (2023). Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication. https://doi.org/10.1088/1758-5090/ad0261

Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106

Emenecker, R. J., Cammarata, J., Yuan, I., Howard, C., Ebrahimi Naghani, S., Robert, H. S., Nambara, E., & Strader, L. C. (2023). Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development. https://doi.org/10.1242/dev.202106

Ewoldt, J. K., Wang, M.C., McLellan, M.A., Cloonan, P.E., Chopra, A., Gorham, J., Li, L., DeLaughter, D.M., Gao, X., Lee, J.H., Willcox J.A.L., Layton, O., Luu, R.J., Toepfer, C.N., Eyckmans, J., Seidman, C.E., Seidman, J.G., & Chen, C.S. (2024). Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. Science Advances, 10(42). https://doi.org/10.1126/sciadv.adi6927

Ewoldt, J. K., Wang, M.C., McLellan, M.A., Cloonan, P.E., Chopra, A., Gorham, J., Li, L., DeLaughter, D.M., Gao, X., Lee, J.H., Willcox J.A.L., Layton, O., Luu, R.J., Toepfer, C.N., Eyckmans, J., Seidman, C.E., Seidman, J.G., & Chen, C.S. (2024). Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. Science Advances, 10(42). https://doi.org/10.1126/sciadv.adi6927

Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344 

Fang, F., Linstadt, R. T. H., Genin, G. M., Ahn, K., & Thomopoulos, S. (2022). Mechanically Competent Chitosan-Based Bioadhesive for Tendon-to-Bone Repair [https://doi.org/10.1002/adhm.202102344]. Advanced Healthcare Materials, 11(10), 2102344. https://doi.org/https://doi.org/10.1002/adhm.202102344 

Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228

Gagnon, K. A., Huang, J., Hix, O. T., Hui, V. W., Hinds, A., Bullitt, E., Eyckmans, J., Kotton, D. N., & Chen, C. S. (2024). Multicompartment duct platform to study epithelial–endothelial crosstalk associated with lung adenocarcinoma. APL Bioengineering, 8(2), 026126. https://doi.org/10.1063/5.0207228

Galarraga, J. H., Dhand, A. P., Bruce P.  Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218

Galarraga, J. H., Dhand, A. P., Bruce P.  Enzmann, I., & Burdick, J. A. (2022). Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Biomacromolecules. https://doi.org/10.1021/ACS.BIOMAC.2C01218

Galie, P. A., Pogoda, K., Tran, K. A., Cēbers, A., & Janmey, P. A. (2024). Magnetoelastic Elastomers and Hydrogels for Studies of Mechanobiology. In B. Doudin, M. Coey, & A. Cēbers (Eds.), Magnetic Microhydrodynamics: An Emerging Research Field (pp. 143-156). Springer International Publishing. https://doi.org/10.1007/978-3-031-58376-6_11

Galie, P. A., Pogoda, K., Tran, K. A., Cēbers, A., & Janmey, P. A. (2024). Magnetoelastic Elastomers and Hydrogels for Studies of Mechanobiology. In B. Doudin, M. Coey, & A. Cēbers (Eds.), Magnetic Microhydrodynamics: An Emerging Research Field (pp. 143-156). Springer International Publishing. https://doi.org/10.1007/978-3-031-58376-6_11

Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K

Goestenkors, A. P., Liu, T., Okafor, S. S., Semar, B. A., Alvarez, R. M., Montgomery, S. K., Friedman, L., & Rutz, A. L. (2023). Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing [10.1039/D3TB01415K]. Journal of Materials Chemistry B, 11(47), 11357-11371. https://doi.org/10.1039/D3TB01415K

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Gong, Z., Szczesny, S. E., Caliari, S. R., Charrier, E. E., Chaudhuri, O., Cao, X., Lin, Y., Mauck, R. L., Janmey, P. A., Burdick, J. A., & Shenoy, V. B. (2018). Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 115(12), E2686–E2695. https://doi.org/10.1073/pnas.1716620115

Guo, J., Jiang, H., Schuftan, D., Moreno, J. D., Ramahdita, G., Aryan, L., Bhagavan, D., Silva, J., & Huebsch, N. (2024). Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy. iScience, 27(6). https://doi.org/10.1016/j.isci.2024.109954

Guo, J., Jiang, H., Schuftan, D., Moreno, J. D., Ramahdita, G., Aryan, L., Bhagavan, D., Silva, J., & Huebsch, N. (2024). Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy. iScience, 27(6). https://doi.org/10.1016/j.isci.2024.109954

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M.(2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596

Heo, S.-J., Thakur, S., Chen, X., Loebel, C., Xia, B., Mcbeath, R., Burdick, J. A., Shenoy, V. B., Mauck, R. L., Lakadamyali, M. (2022). Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. Nature Biomedical Engineering, (in press).

Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583 

Hoppe, E. D., Birman, V., Kurtaliaj, I., Guilliams, C. M., Pickard, B. G., Thomopoulos, S., & Genin, G. M. (2023). A discrete shear lag model of the mechanics of hitchhiker plants, and its prospective application to tendon-to-bone repair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2271), 20220583. https://doi.org/10.1098/rspa.2022.0583 

**  NOTE:  see press release for this publication HERE.

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T. J., Genin, G. M., & Xu, F. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117 (20), 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, H., Ayariga, J., Ning, H., Nyairo, E., & Dean, D. (2021). Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network. Additive Manufacturing, 46, 102120. https://doi.org/10.1016/J.ADDMA.2021.102120

Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725 

Huang, Y., Hoppe, E. D., Kurtaliaj, I., Birman, V., Thomopoulos, S., & Genin, G. M. (2022). Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 250, 111725. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2022.111725 

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027

Jiang, S., Alisafaei, F., Huang, Y.-Y., Hong, Y., Peng, X., Qu, C., Puapatanakul, P., Jain, S., Miner, J. H., Genin, G. M., & Suleiman, H. Y. (2022). An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. Science Advances, 8(35), 31. https://doi.org/10.1126/SCIADV.ABN6027
**  NOTE:  see press release for this publication HERE.

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., Genin, G. M., & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nature Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11397-1

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Kant, A., Johnson, V. E., Arena, J. D., Dollé, J. P., Smith, D. H., & Shenoy, V. B. (2021). Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences, 118(28). https://doi.org/10.1073/PNAS.2024961118

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khandekar, G., Llewellyn, J., Kriegermeier, A., Waisbourd-Zinman, O., Johnson, N., Du, Y., Giwa, R., Liu, X., Kisseleva, T., Russo, P. A., Theise, N. D., & Wells, R. G. (2020). Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. Journal of Hepatology, 72(1), 135–145. https://doi.org/10.1016/j.jhep.2019.08.036

Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/doi.org/10.1021/acsbiomaterials.3c00147

Khare, E., Peng, X., Martín-Moldes, Z., Genin, G. M., Kaplan, D. L., & Buehler, M. J. (2023). Application of the Interagency and Modeling Analysis Group Model Verification Approach for Scientific Reproducibility in a Study of Biomineralization. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c00147

Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476 

Kraus, E. A., Mellenthin, L. E., Siwiecki, S. A., Song, D., Yan, J., Janmey, P. A., & Sweeney, A. M. (2022). Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. Journal of the Royal Society Interface, 19(195). https://doi.org/10.1098/RSIF.2022.0476

Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270

Kurtaliaj, I., Hoppe, E. D., Huang, Y., Ju, D., Sandler, J. A., Yoon, D., Smith, L. J., Betancur, S. T., Effiong, L., Gardner, T., Tedesco, L., Desai, S., Birman, V., Levine, W. N., Genin, G. M., & Thomopoulos, S. Python tooth–inspired fixation device for enhanced rotator cuff repair. Science Advances, 10(26), eadl5270. https://doi.org/10.1126/sciadv.adl5270

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Kutys, M. L., Polacheck, W. J., Welch, M. K., Gagnon, K. A., Koorman, T., Kim, S., Li, L., McClatchey, A. I., & Chen, C. S. (2020). Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17102-x

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Laidmäe, I., Ērglis, K., Cēbers, A., Janmey, P. A., & Uibo, R. (2018). Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 29(12), 1–12. https://doi.org/10.1007/s10856-018-6192-8

Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120

Lee, E., Chan, S.-L., Lee, Y., Polacheck, W. J., Kwak, S., Wen, A., Nguyen, D., Kutys, M. L., Alimperti, S., Kolarzyk, A. M., Kwak, T. J., Eyckmans, J., Bielenberg, D. R., Chen, H., & Chen, C. S. (2023). A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex. Proceedings of the National Academy of Sciences of the United States of America, 120(41), e2308941120-e2308941120. https://doi.org/10.1073/pnas.2308941120

Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567

Li, L., Griebel, M. E., Uroz, M., Bubli, S. Y., Gagnon, K. A., Trappmann, B., Baker, B. M., Eyckmans, J., & Chen, C. S. (2024). A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses. Advanced Functional Materials, 2309567. https://doi.org/10.1002/adfm.202309567

Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104

Limaye, A., Perumal, V., Karner, C. M., & Livingston Arinzeh, T. (2023). Plant‐Derived Zein as an Alternative to Animal‐Derived Gelatin for Use as a Tissue Engineering Scaffold. Advanced NanoBiomed Research, 2300104. https://doi.org/10.1002/anbr.202300104

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C. O., & Yang, S. (2020). Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 1900163. https://doi.org/10.1002/aisy.201900163

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Loebel, C., Kwon, M. Y., Wang, C., Han, L., Mauck, R. L., & Burdick, J. A. (2020). Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Advanced Functional Materials, 1909802. https://doi.org/10.1002/adfm.201909802

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Mauck, R. L., & Burdick, J. A. (2019). Local nascent protein deposition and remodeling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nature Materials, 18(8), 883–891. https://doi.org/10.1038/s41563-019-0307-6

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Saleh, A. M., Jacobson, K. R., Daniels, R., Mauck, R. L., Calve, S., & Burdick, J. A. (2022). Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 17(3), 618–648. https://doi.org/10.1038/s41596-021-00652-9

Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992 

Loebel, C., Weiner, A. I., Eiken, M. K., Katzen, J. B., Morley, M. P., Bala, V., Cardenas-Diaz, F. L., Davidson, M. D., Shiraishi, K., Basil, M. C., Ferguson, L. T., Spence, J. R., Ochs, M., Beers, M. F., Morrisey, E. E., Vaughan, A. E., & Burdick, J. A. (2022). Microstructured Hydrogels to Guide Self-Assembly and Function of Lung Alveolospheres. Advanced Materials, 34(28), 2202992-2202992. https://doi.org/10.1002/ADMA.202202992 

Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777

Łysik, D., Deptuła, P., Chmielewska, S., Skłodowski, K., Pogoda, K., Chin, L., Song, D., Mystkowska, J., Janmey, P. A., & Bucki, R. (2022). Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/ACSBIOMATERIALS.2C00777

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Ma, S., Zhu, M., Xia, X., Guo, L., Genin, G. M., Sacks, M. S., Gao, M., Mutic, S., Hu, Y., Hu, C., & Feng, Y. (2019). A preliminary study of the local biomechanical environment of liver tumors in vivo. Medical Physics, 46(4), 1728–1739. https://doi.org/10.1002/mp.13434

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B., & Janmey, P. A. (2020). Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomaterials Science, 8(5), 1316–1328. https://doi.org/10.1039/c9bm01339c

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

Mandal, K., Raz-Ben Aroush, D., Graber, Z. T., Wu, B., Park, C. Y., Fredberg, J. J., Guo, W., Baumgart, T., & Janmey, P. A. (2019). Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano, 13(1), 203–214. https://doi.org/10.1021/acsnano.8b05286

McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196

McAfee, Q., Caporizzo, M. A., Uchida, K., Bedi Jr, K. C., Margulies, K. B., Arany, Z., & Prosser, B. L. (2023). Truncated titin protein in dilated cardiomyopathy incorporates into the sarcomere and transmits force. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI170196

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

McDermott, A. M., Herberg, S., Mason, D. E., Collins, J. M., Pearson, H. B., Dawahare, J. H., Tang, R., Patwa, A. N., Grinstaff, M. W., Kelly, D. J., Alsberg, E., & Boerckel, J. D. (2019). Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Science Translational Medicine, 11(495). https://doi.org/10.1126/scitranslmed.aav7756

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Hashemi, S., Vincent, R., Collins, G., Meyer, J., Foston, M., & Arinzeh, T. L. (2019). Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomaterialia, 90, 169–178. https://doi.org/10.1016/j.actbio.2019.03.024

Menezes, R., Sherman, L., Rameshwar, P., & Arinzeh, T. L. (2023). Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.37496

Menezes, R., Sherman, L., Rameshwar, P., & Arinzeh, T. L. (2023). Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. Journal of Biomedical Materials Research Part A. https://doi.org/10.1002/JBM.A.37496

Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064

Menezes, R., Vincent, R., Osorno, L., Hu, P., & Arinzeh, T. L. (2022). Biomaterials and Tissue Engineering Approaches using Glycosaminoglycans for Tissue Repair: Lessons Learned from the Native Extracellular Matrix. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.09.064

Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017

Meyer, J. R., Waghmode, S. B., He, J., Gao, Y., Hoole, D., da Costa Sousa, L., Balan, V., & Foston, M. B. (2018). Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 119, 446–455. https://doi.org/10.1016/j.biombioe.2018.09.017

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Michas, C., Karakan, M. Ç., Nautiyal, P., Seidman, J. G., Seidman, C. E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A. E., & Chen, C. S. (2022). Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 8(16), 3791. https://doi.org/10.1126/SCIADV.ABM3791

Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/https://doi.org/10.1002/adhm.202401550

Moheimani, H., Stealey, S., Neal, S., Ferchichi, E., Zhang, J., Foston, M., Setton, L. A., Genin, G. M., Huebsch, N., & Zustiak, S. P. (2024). Tunable Viscoelasticity of Alginate Hydrogels via Serial Autoclaving. Advanced Healthcare Materials, 2401550. https://doi.org/10.1002/adhm.202401550

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7).https://advances.sciencemag.org/content/7/11/eabe9446

Mondrinos, M. J., Alisafaei, F., Yi, A. Y., Ahmadzadeh, H., Lee, I., Blundell, C., Seo, J., Osborn, M., Jeon, T.-J., Kim, S. M., Shenoy, V. B., & Huh, D. (2021). Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. In Sci. Adv (Vol. 7). https://advances.sciencemag.org/content/7/11/eabe9446

Mora-Boza, A., Mulero-Russe, A., Di Caprio, N., Burdick, J. A., O’Neill, E., Singh, A., & García, A. J. (2024). Facile photopatterning of perfusable microchannels in hydrogels for microphysiological systems. Nature Protocols. https://doi.org/10.1038/s41596-024-01041-8

Mora-Boza, A., Mulero-Russe, A., Di Caprio, N., Burdick, J. A., O’Neill, E., Singh, A., & García, A. J. (2024). Facile photopatterning of perfusable microchannels in hydrogels for microphysiological systems. Nature Protocols. https://doi.org/10.1038/s41596-024-01041-8

Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120

Noerr, P. S., Zamora Alvarado, J. E., Golnaraghi, F., McCloskey, K. E., Gopinathan, A., & Dasbiswas, K. (2023). Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proceedings of the National Academy of Sciences, 120(45), e2301555120. https://doi.org/10.1073/pnas.2301555120

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Park, S. E., Lu, Q., Park, K. T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643. https://doi.org/10.1021/acsnano.9b00686

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Paek, J., Song, J. W., Ban, E., Morimitsu, Y., Osuji, C. O., Shenoy, V. B., & Huh, D. D. (2021). Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Scientific Reports, 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-94769-2

Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E. (2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167

Pardo, A., Gomez‐Florit, M., Davidson, M. D., Özgen Öztürk‐Öncel, M., Domingues, R. M., Burdick, J. A., & Gomes, M. E.(2024). Hierarchical Design of Tissue‐Mimetic Fibrillar Hydrogel Scaffolds. Advanced Healthcare Materials, 2303167. https://doi.org/10.1002/adhm.202303167

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, J. Y., Mani, S., Clair, G., Olson, H. M., Paurus, V. L., Ansong, C. K., Blundell, C., Young, R., Kanter, J., Gordon, S., Yi, A. Y., Mainigi, M., & Huh, D. D. (2022). A microphysiological model of human trophoblast invasion during implantation. Nature Communications 2022 13:1, 13(1), 1–18. https://doi.org/10.1038/s41467-022-28663-4

Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8

Park, S. E., Kang, S., Paek, J., Georgescu, A., Chang, J., Yi, A. Y., Wilkins, B. J., Karakasheva, T. A., Hamilton, K. E., & Huh, D. D. (2022). Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nature Methods 2022, 1–12. https://doi.org/10.1038/s41592-022-01643-8

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (2021). Stabilization of damaged articular cartilage with hydrogel‐mediated reinforcement and sealing. Advanced Healthcare Materials, 2100315. https://doi.org/10.1002/adhm.202100315

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., He, W., Xin, F., Genin, G. M., & Lu, T. J. (2020). Standing surface acoustic waves, and the mechanics of acoustic tweezer manipulation of eukaryotic cells. Journal of the Mechanics and Physics of Solids, 145, 104134. https://doi.org/10.1016/j.jmps.2020.104134

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Peng, X., Liu, Y., He, W., Hoppe, E. D., Zhou, L., Xin, F., Haswell, E. S., Pickard, B. G., Genin, G. M., & Lu, T. J. (2022). Acoustic radiation force on a long cylinder,and potential sound transduction by tomato trichomes. Biophysical Journal. https://doi.org/10.1016/J.BPJ.2022.08.038

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Prendergast, M. E., Davidson, M., & Burdick, J. A. (2021). A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers. Biofabrication, 9. https://doi.org/10.1088/1758-5090/AC25CC

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Muir, V. G., & Burdick, J. A. (2022). Methods to characterize granular hydrogel rheological properties, porosity, and cell invasion. ACS Biomaterials Science & Engineering, 8(4), 1427–1442. https://doi.org/10.1021/ACSBIOMATERIALS.1C01440

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qazi, T. H., Wu, J., Muir, V. G., Weintraub, S., Gullbrand, S. E., Lee, D., Issadore, D., & Burdick, J. A. (2022). Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Advanced Materials, 34(12), 2109194. https://doi.org/10.1002/ADMA.202109194

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Qu, F., Li, Q., Wang, X., Cao, X., Zgonis, M. H., Esterhai, J. L., Shenoy, V. B., Han, L., & Mauck, R. L. (2018). Maturation state and matrix microstructure regulate interstitial cell migration in dense connective tissues. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21212-4

Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4 

Ramachandran, A., Livingston, C. E., Vite, A., Corbin, E. A., Bennett, A. I., Turner, K. T., Lee, B. W., Lam, C. K., Wu, J. C., & Margulies, K. B. (2023). Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-022-10348-4 

Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026

Riffe, M. B., Davidson, M. D., Seymour, G., Dhand, A. P., Cooke, M. E., Zlotnick, H. M., McLeod, R. R., & Burdick, J. A. (2024). Multi‐Material Volumetric Additive Manufacturing of Hydrogels Using Gelatin as A Sacrificial Network And 3d Suspension Bath. Advanced Materials, 2309026. https://doi.org/10.1002/adma.202309026

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Rodell, C. B., Chen, M. H., Morrow, M. G., Anseth, K. S., & Burdick, J. A. (2018). Reversible control of network properties in azobenzene-containing hyaluronic acid-based hydrogels. Bioconjugate Chemistry, 29(4), 905–913. https://doi.org/10.1021/acs.bioconjchem.7b00802

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., & Anseth, K. S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition, 56(40), 12132–12136. https://doi.org/10.1002/anie.201705684

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Schindler, C., Singh, S., Catledge, S. A., Thomas, V., & Dean, D. R. (2021). Patterning of Nano-Hydroxyapatite onto SiO2 and Electro-spun Mat Surfaces Using Dip-Pen Nanolithography. Journal of Molecular Structure, 1237, 130320. https://doi.org/10.1016/j.molstruc.2021.130320

Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677

Simmons, D. W., Malayath, G., Schuftan, D. R., Guo, J., Oguntuyo, K., Ramahdita, G., Sun, Y., Jordan, S. D., Munsell, M. K., Kandalaft, B., Pear, M., Rentschler, S. L., & Huebsch, N. (2024). Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL bioengineering, 8(1). https://doi.org/10.1063/5.0160677

Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279 

Simmons, D. W., Schuftan, D. R., Ramahdita, G., & Huebsch, N. (2023). Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c02279 

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, H. G., Lammers, A., Sundaram, S., Rubio, L., Chen, A. X., Li, L., Eyckmans, J., Bhatia, S. N., & Chen, C. S. (2020). Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. Advanced Functional Materials, 30(48), 2003777. https://doi.org/10.1002/adfm.202003777

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Song, K. H., Heo, S., Peredo, A. P., Davidson, M. D., Mauck, R. L., & Burdick, J. A. (2019). Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Advanced Healthcare Materials, 1901228. https://doi.org/10.1002/adhm.201901228

Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659

Tsinman, T., Huang, Y., Ahmed, S., Levillain, A., Evans, M., Jiang, X., Nowlan, N., Dyment, N., & Mauck, R. (2023). Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. Journal of Orthopaedic Research®. https://doi.org/doi.org/10.1002/jor.25659 

Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1 

Uehlin, A. F., Vines, J. B., Feldman, D. S., Nyairo, E., Dean, D. R., & Thomas, V. (2022). Uni-Directionally Oriented Fibro-Porous PLLA/Fibrin Bio-Hybrid Scaffold: Mechano-Morphological and Cell Studies. Pharmaceutics, 14(2), 277-277. https://doi.org/10.3390/PHARMACEUTICS14020277/S1 

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

van Oosten, A. S. G., Chen, X., Chin, L. K., Cruz, K., Patteson, A. E., Pogoda, K., Shenoy, V. B., & Janmey, P. A. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 573 (7772), 96–101. https://doi.org/10.1038/s41586-019-1516-5

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

Vega, S. L., Kwon, M. Y., Song, K. H., Wang, C., Mauck, R. L., Han, L., & Burdick, J. A. (2018). Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature Communications, 9(1), 1–10. https://doi.org/10.1038/s41467-018-03021-5

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

von Kleeck, R., Roberts, E., Castagnino, P., Bruun, K., Brankovic, S. A., Hawthorne, E. A., Xu, T., Tobias, J. W., & Assoian, R. K. (2021). Arterial stiffness and cardiac dysfunction in Hutchinson-Gilford Progeria Syndrome corrected by inhibition of lysyl oxidase. Life Science Alliance, 4(5), 1–16. https://doi.org/10.26508/lsa.202000997

Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract

Wang, C., Clark, A., Yan, Z., Kong, B., & Cheng, X. (2018). Fabrication and characterization of magnetic-vortex microdiscs for applying force in mechanobiological systems. APS, 2018, A06.002. https://ui.adsabs.harvard.edu/abs/2018APS..MARA06002W/abstract

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G. M., Lu, T. J., & Xu, F. (2020). Characterizing poroelasticity of biological tissues by spherical indentation: An improved theory for large relaxation. Journal of the Mechanics and Physics of Solids, 138, 103920. https://doi.org/10.1016/j.jmps.2020.103920

Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258

Warzoha, R. J., Wilson, A. A., Donovan, B. F., Clark, A., Cheng, X., An, L., & Feng, G. (2024). Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.4c05258

Woodhams, L. G., Guo, J., Schuftan, D., Boyle, J. J., Pryse, K. M., Elson, E. L., Huebsch, N., & Genin, G. M. (2023). Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proceedings of the National Academy of Sciences, 120(38), e2212949120. https://doi.org/10.1073/pnas.2212949120

Woodhams, L. G., Guo, J., Schuftan, D., Boyle, J. J., Pryse, K. M., Elson, E. L., Huebsch, N., & Genin, G. M. (2023). Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proceedings of the National Academy of Sciences, 120(38), e2212949120. https://doi.org/10.1073/pnas.2212949120

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Wu, S., Chen, M.-S., Maurel, P., Lee, Y., Bunge, M. B., & Arinzeh, T. L. (2018). Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5), 056010. https://doi.org/10.1088/1741-2552/aac77f

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yeh, Y. C., Corbin, E. A., Caliari, S. R., Ouyang, L., Vega, S. L., Truitt, R., Han, L., Margulies, K. B., & Burdick, J. A. (2017). Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 145, 23–32. https://doi.org/10.1016/j.biomaterials.2017.08.033

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Yin, J., Liu, H., Jiao, J., Peng, X., Pickard, B. G., Genin, G. M., Lu, T. J., & Liu, S. (2021). Ensembles of the leaf trichomes of Arabidopsis thaliana selectively vibrate in the frequency range of its primary insect herbivore. Extreme Mechanics Letters, 48, 101377. https://doi.org/10.1016/J.EML.2021.101377

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yoon, C., Choi, C., Stapleton, S., Mirabella, T., Howes, C., Dong, L., King, J., Yang, J., Oberai, A., Eyckmans, J., & Chen, C. S. (2019). Myosin IIA–mediated forces regulate multicellular integrity during vascular sprouting. Molecular Biology of the Cell, 30(16), 1974–1984. https://doi.org/10.1091/mbc.E19-02-0076

Yu, H., Jafari, M., Mujahid, A., Garcia, C. F., Shah, J., Sinha, R., Huang, Y., Shakiba, D., Hong, Y., Cheraghali, D., Pryce, J. R. S., Sandler, J. A., Elson, E. L., Sacks, J. M., Genin, G. M., & Alisafaei, F. . (2024). Expansion limits of meshed split-thickness skin grafts. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2024.11.038

Yu, H., Jafari, M., Mujahid, A., Garcia, C. F., Shah, J., Sinha, R., Huang, Y., Shakiba, D., Hong, Y., Cheraghali, D., Pryce, J. R. S., Sandler, J. A., Elson, E. L., Sacks, J. M., Genin, G. M., & Alisafaei, F. (2024). Expansion limits of meshed split-thickness skin grafts. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2024.11.038

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/10.1038/s41427-018-0092-8

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D. W., Fernández-Yagüe, M. A., Holland, E. N., García, A. F., Castro, N. S., O’Neill, E. B., Eyckmans, J., Chen, C. S., Fu, J., Schlaepfer, D. D., & García, A. J. (2021). Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 12(1), 1–13. https://doi.org/10.1038/s41467-021-22602-5

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhou, D., Hao, J., Clark, A., Kim, K., Zhu, L., Liu, J., Cheng, X., & Li, B. (2019). Sono-assisted surface energy driven assembly of 2D materials on flexible polymer substrates: A green assembly method using water. ACS Applied Materials and Interfaces, 11(36), 33458–33464. https://doi.org/10.1021/acsami.9b10469

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, H., Ma, Y., Lu, T. J., Xu, F., Genin, G. M., & Lin, M. (2020). Spatiotemporally controlled photoresponsive hydrogels: Design and predictive modeling from processing through application. Advanced Functional Materials, 30(32), 2000639. https://doi.org/10.1002/adfm.202000639

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zhu, H., Yang, X., Genin, G. M., Lu, T. J., Xu, F., & Lin, M. (2018). The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition. Journal of the Mechanical Behavior of Biomedical Materials, 88, 160–169. https://doi.org/10.1016/j.jmbbm.2018.08.013

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues (Adv. Mater. 48/2020). Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Clark, A. T., Gullbrand, S. E., Carey, J. L., Cheng, X. M., & Mauck, R. L. (2020). Magnetic Patterning: Magneto‐Driven Gradients of Diamagnetic Objects for Engineering Complex Tissues. Advanced Materials, 32(48), 2070356. https://doi.org/10.1002/adma.202070356

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Hemdev, S., Stoeckl, B. D., Gupta, S., Peredo, A. P., Steinberg, D. R., Carey, J. L., Lee, D., Dodge, G. R., & Mauck, R. L. (2022). Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication. https://doi.org/10.1088/1758-5090/AC79CD

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Zlotnick, H. M., Locke, R. C., Stoeckl, B. D., Patel, J. M., Gupta, S., Browne, K. D., Koh, J., Carey, J. L., & Mauck, R. L. (2021). Marked differences in local bone remodeling in response to different marrow stimulation techniques in a large animal. European Cells and Materials, 41, 546–557. https://doi.org/10.22203/eCM.v041a35

Go to Top